dc.contributor.author | Romney, Matthew | |
dc.date.accessioned | 2019-06-10T09:43:28Z | |
dc.date.available | 2021-08-01T21:35:09Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Romney, M. (2019). Singular quasisymmetric mappings in dimensions two and greater. <i>Advances in Mathematics</i>, <i>31</i>, 479-494. <a href="https://doi.org/10.1016/j.aim.2019.05.022" target="_blank">https://doi.org/10.1016/j.aim.2019.05.022</a> | |
dc.identifier.other | CONVID_30878693 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/64478 | |
dc.description.abstract | For all n ≥2, we construct a metric space (X, d)and a quasisymmetric mapping f:[0, 1]n→X with the property that f−1 is not absolutely continuous with respect to the Hausdorff n-measure on X. That is, there exists a Borel set E⊂[0, 1]n with Lebesgue measure |E| >0 such that f(E) has Hausdorff n-measure zero. The construction may be carried out so that X has finite Hausdorff n-measure and |E| is arbitrarily close to 1, or so that |E| =1. This gives a negative answer to a question of Heinonen and Semmes. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Academic Press | |
dc.relation.ispartofseries | Advances in Mathematics | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | quasiconformal mapping | |
dc.subject.other | metric space | |
dc.subject.other | absolute continuity | |
dc.title | Singular quasisymmetric mappings in dimensions two and greater | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201906052970 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2019-06-05T09:15:13Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 479-494 | |
dc.relation.issn | 0001-8708 | |
dc.relation.numberinseries | 0 | |
dc.relation.volume | 31 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 288501 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 713998 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG | |
dc.subject.yso | metriset avaruudet | |
dc.subject.yso | funktioteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18494 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.aim.2019.05.022 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Academy of Finland | en |
dc.relation.funder | European Commission | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | ERC Starting Grant | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Starting Grant | en |
jyx.fundinginformation | This research was supported by the Academy of Finland grant 288501 and by the ERC Starting Grant 713998 GeoMeG. | |
dc.type.okm | A1 | |