Density functional theory description of random Cu-Au alloys
dc.contributor.author | Tian, L.-Y. | |
dc.contributor.author | Levämäki, H. | |
dc.contributor.author | Kuisma, Mikael | |
dc.contributor.author | Kokko, K. | |
dc.contributor.author | Nagy, Á. | |
dc.contributor.author | Vitos, L. | |
dc.date.accessioned | 2019-05-29T06:40:13Z | |
dc.date.available | 2019-05-29T06:40:13Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Tian, L.-Y., Levämäki, H., Kuisma, M., Kokko, K., Nagy, Á., & Vitos, L. (2019). Density functional theory description of random Cu-Au alloys. <i>Physical Review B</i>, <i>99</i>(6), Article 064202. <a href="https://doi.org/10.1103/PhysRevB.99.064202" target="_blank">https://doi.org/10.1103/PhysRevB.99.064202</a> | |
dc.identifier.other | CONVID_28933264 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/64274 | |
dc.description.abstract | Density functional alloy theory is used to accurately describe the three core effects controlling the thermodynamics of random Cu-Au alloys. These three core effects are exchange correlation (XC), local lattice relaxations (LLRs), and short-range order (SRO). Within the real-space grid-based projector augmented-wave (GPAW) method based on density functional theory (DFT), we adopt the quasinonuniform XC approximation (QNA), and take into account the LLR and the SRO effects. Our approach allows us to study the importance of all three core effects in a unified way within one DFT code. The results demonstrate the importance of the LLR term and show that going from the classical gradient level approximations to QNA leads to accurate formation energies at various degrees of ordering. The order-disorder transition temperatures for the 25%, 50%, and 75% alloys reach quantitative agreement with the experimental values only when also the SRO effects are considered. © 2019 American Physical Society. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review B | |
dc.rights | In Copyright | |
dc.subject.other | electronic structure | |
dc.subject.other | first-principles calculations | |
dc.subject.other | Binary alloys | |
dc.subject.other | Copper alloys | |
dc.subject.other | Gold alloys | |
dc.subject.other | Lunar surface analysis | |
dc.subject.other | Thermodynamics | |
dc.subject.other | Density functional theory | |
dc.title | Density functional theory description of random Cu-Au alloys | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201905292861 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2019-05-29T06:15:14Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2469-9950 | |
dc.relation.numberinseries | 6 | |
dc.relation.volume | 99 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 American Physical Society. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 295602 | |
dc.subject.yso | tiheysfunktionaaliteoria | |
dc.subject.yso | metalliseokset | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28852 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4519 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1103/PhysRevB.99.064202 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundinginformation | The authors thank the Swedish Research Council, the Swedish Foundation for Strategic Research, the Swedish Foundation for International Cooperation in Research and Higher Education, the Swedish Energy Agency, the Hungarian Scientific Research Fund (OTKA) Grants No. K128229 and No. K123988, and Academy of Finland (Grant No. 295602) for financial support. The Finnish IT Center for Science (CSC), the Finnish Grid and Cloud Infrastructure (FGCI) project, and the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) are acknowledged for the computational resources. | |
dc.type.okm | A1 |