Show simple item record

dc.contributor.authorNiku, Jenni
dc.contributor.authorBrooks, Wesley
dc.contributor.authorHerliansyah, Riki
dc.contributor.authorHui, Francis K. C.
dc.contributor.authorTaskinen, Sara
dc.contributor.authorWarton, David I.
dc.date.accessioned2019-05-29T06:14:34Z
dc.date.available2019-05-29T06:14:34Z
dc.date.issued2019
dc.identifier.citationNiku, J., Brooks, W., Herliansyah, R., Hui, F. K. C., Taskinen, S., & Warton, D. I. (2019). Efficient estimation of generalized linear latent variable models. <i>PLoS ONE</i>, <i>14</i>(5), Article e0216129. <a href="https://doi.org/10.1371/journal.pone.0216129" target="_blank">https://doi.org/10.1371/journal.pone.0216129</a>
dc.identifier.otherCONVID_30608649
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64263
dc.description.abstractGeneralized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence-absences, counts, or biomass of interacting species are collected from a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of computationally efficient estimation methods. For likelihood based estimation, several closed form approximations for the marginal likelihood of GLLVMs have been proposed, but their efficient implementations have been lacking in the literature. To fill this gap, we show in this paper how to obtain computationally convenient estimation algorithms based on a combination of either the Laplace approximation method or variational approximation method, and automatic optimization techniques implemented in R software. An extensive set of simulation studies is used to assess the performances of different methods, from which it is shown that the variational approximation method used in conjunction with automatic optimization offers a powerful tool for estimation.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science
dc.relation.ispartofseriesPLoS ONE
dc.rightsCC BY 4.0
dc.subject.othergeneralized linear latent variable models
dc.titleEfficient estimation of generalized linear latent variable models
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201905062409
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-05-06T09:15:39Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1932-6203
dc.relation.numberinseries5
dc.relation.volume14
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 Niku et al.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotilastolliset mallit
dc.subject.ysoestimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26278
jyx.subject.urihttp://www.yso.fi/onto/yso/p11349
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1371/journal.pone.0216129
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0