dc.contributor.author | Niku, Jenni | |
dc.contributor.author | Brooks, Wesley | |
dc.contributor.author | Herliansyah, Riki | |
dc.contributor.author | Hui, Francis K. C. | |
dc.contributor.author | Taskinen, Sara | |
dc.contributor.author | Warton, David I. | |
dc.date.accessioned | 2019-05-29T06:14:34Z | |
dc.date.available | 2019-05-29T06:14:34Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Niku, J., Brooks, W., Herliansyah, R., Hui, F. K. C., Taskinen, S., & Warton, D. I. (2019). Efficient estimation of generalized linear latent variable models. <i>PLoS ONE</i>, <i>14</i>(5), Article e0216129. <a href="https://doi.org/10.1371/journal.pone.0216129" target="_blank">https://doi.org/10.1371/journal.pone.0216129</a> | |
dc.identifier.other | CONVID_30608649 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/64263 | |
dc.description.abstract | Generalized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence-absences, counts, or biomass of interacting species are collected from a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of computationally efficient estimation methods. For likelihood based estimation, several closed form approximations for the marginal likelihood of GLLVMs have been proposed, but their efficient implementations have been lacking in the literature. To fill this gap, we show in this paper how to obtain computationally convenient estimation algorithms based on a combination of either the Laplace approximation method or variational approximation method, and automatic optimization techniques implemented in R software. An extensive set of simulation studies is used to assess the performances of different methods, from which it is shown that the variational approximation method used in conjunction with automatic optimization offers a powerful tool for estimation. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Public Library of Science | |
dc.relation.ispartofseries | PLoS ONE | |
dc.rights | CC BY 4.0 | |
dc.subject.other | generalized linear latent variable models | |
dc.title | Efficient estimation of generalized linear latent variable models | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201905062409 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2019-05-06T09:15:39Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1932-6203 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 14 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 Niku et al. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | tilastolliset mallit | |
dc.subject.yso | estimointi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26278 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11349 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1371/journal.pone.0216129 | |
dc.type.okm | A1 | |