Näytä suppeat kuvailutiedot

dc.contributor.advisorRajala, Kai
dc.contributor.authorTuominen, Eemu
dc.date.accessioned2019-04-05T06:27:35Z
dc.date.available2019-04-05T06:27:35Z
dc.date.issued2019
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63401
dc.description.abstractTutkielmassa lähdetään liikkeelle metristen avaruuksien täydellistämisestä täydellisiksi metrisiksi avaruuksiksi, missä Cauchy-jonoilla on merkittävä rooli. Täydellistymisprosessista käydään läpi esimerkkinä rationaalilukujen täydellistäminen reaaliluvuiksi euklidisella normilla. Myöhemmin tutkitaan rationaalilukujen täydellistämistä toisenlaisella normilla, josta tulee hyvin erilainen kunta. Kappaleen 2 lopuksi käsitellään lause, jonka avulla saadaan muodostettua täydellinen metrinen avaruus kätevästi tietyillä ehdoilla. Tämän jälkeen tutkitaan kunnan normin erilaisia tuloksia ja määritellään jonon ominaisuuksia. Lisäksi perehdytään vahvaan kolmioepäyhtälöön, jonka toteuttavaa normia sanotaan epäarkhimediseksi. Seuraavaksi on järkevää yhdistää kahden aiemman kappaleen tuloksia ja tutkia normilla varustettujen kuntien täydellistämistä. Näiden tulosten nojalla Kappaleessa 5 voidaan siirtyä pääasiaan eli p-adisiin lukuihin. P-adisia lukuja varten määritellään p-adinen normi, joka riippuu alkuluvusta p. P-adisten lukujen kunta Q_p saadaan täydellistämisprosessilla rationaaliluvuista p-adisella normilla. P-adisten lukujen joukosta saadaan myös toinen mielenkiintoinen joukko, p-adisten kokonaislukujen joukko Z_p. Kun ollaan päästy p-adisiin lukuihin, niin tutkitaan kuinka niiden aritmeettiset laskustoimitukset toimivat. Ne eroavat jossain määrin perinteisistä reaalilukujen laskutoimituksista, mutta jossain mielessä ne ovat jopa helpompia laskea. Tämän jälkeen tutkitaan rationaalilukujen ja p-adisten lukujen yhteyttä. Tarkoituksena on myös selvittää, voidaanko p-adisen luvun laajennuksesta päätellä minkälaista lukua se esittää. Seuraavaksi tutkitaan kongruenssiin liittyviä tuloksia avaruudessa Q_p. Keskeisin asia kongruenssiin liittyvissä tuloksissa on Henselin Lemma, jolla voidaan ratkaista polynomin juuria, kun kertoimet ovat p-adisia lukuja. Tämä on periaatteessa p-adinen veriso Newtonin menetelmästä, jolla etsitään reaalikertoimisen polynomin juuria. Kappaleessa 9 tutkitaan topologisia perusominaisuuksia. Tästä päästään avaruuden Q_p palloihin, jotka käyttäytyvät hyvin eri lailla kuin avaruuden R pallot. Seuraavaksi tutkitaan Cantorin joukkkoa eli ``Cantorin kolmasosajoukkoa'' ja sen ominaisuuksia. Lisäksi kappaleessa kerrataan metristen avaruuksien kuvauksiin liittyviä ominaisuuksia. Näiden avulla luodaan yhteyksiä Cantorin joukkojen ja p-adisten kokonaislukujen joukon Z_p välille. Viimeisessä kappaleessa tutkitaan avaruuden Z_p euklidisia mallinnuksia. Tätä varten muodostetaan kuvaus joukolta Z_p välille [0,1]. Joukkojen Z_p kuvauksilla eri alkuluvun p arvoilla on jotain yhteistä: ne ovat kaikki fraktaaleja.fi
dc.format.extent57
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.subject.otherp-adiset luvut
dc.subject.otherCaychy-jono
dc.subject.otherjatkuvat kuvaukset
dc.titleP-adiset luvut ja avaruuksien Z_p euklidiset mallinnukset
dc.identifier.urnURN:NBN:fi:jyu-201904052078
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysonormit
dc.subject.ysometriset avaruudet
dc.subject.ysoreaaliluvut
dc.subject.ysorationaaliluvut
dc.subject.ysoalkuluvut
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot