Näytä suppeat kuvailutiedot

dc.contributor.authorKumar, Priyank V.
dc.contributor.authorRossi, Tuomas P.
dc.contributor.authorMarti-Dafcik, Daniel
dc.contributor.authorReichmuth, Daniel
dc.contributor.authorKuisma, Mikael
dc.contributor.authorErhart, Paul
dc.contributor.authorPuska, Martti J.
dc.contributor.authorNorris, David J.
dc.date.accessioned2019-03-29T10:16:11Z
dc.date.available2020-01-16T22:35:42Z
dc.date.issued2019
dc.identifier.citationKumar, P. V., Rossi, T. P., Marti-Dafcik, D., Reichmuth, D., Kuisma, M., Erhart, P., Puska, M. J., & Norris, D. J. (2019). Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces. <i>ACS Nano</i>, <i>13</i>(3), 3188-3195. <a href="https://doi.org/10.1021/acsnano.8b08703" target="_blank">https://doi.org/10.1021/acsnano.8b08703</a>
dc.identifier.otherCONVID_28921043
dc.identifier.otherTUTKAID_80661
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63319
dc.description.abstractPlasmon-induced hot-carrier transfer from a metal nanostructure to an acceptor is known to occur via two key mechanisms: (i) indirect transfer, where the hot carriers are produced in the metal nanostructure and subsequently transferred to the acceptor, and (ii) direct transfer, where the plasmons decay by directly exciting carriers from the metal to the acceptor. Unfortunately, an atomic-level understanding of the direct-transfer process, especially with regard to its quantification, remains elusive even though it is estimated to be more efficient compared to the indirect-transfer process. This is due to experimental challenges in separating direct from indirect transfer as both processes occur simultaneously at femtosecond time scales. Here, we employ time-dependent density-functional theory simulations to isolate and study the direct-transfer process at a model metal–acceptor (Ag147–Cd33Se33) interface. Our simulations show that, for a 10 fs Gaussian laser pulse tuned to the plasmon frequency, the plasmon formed in the Ag147–Cd33Se33 system decays within 10 fs and induces the direct transfer with a probability of about 40%. We decompose the direct-transfer process further and demonstrate that the direct injection of both electrons and holes into the acceptor, termed direct hot-electron transfer (DHET) and direct hot-hole transfer (DHHT), takes place with similar probabilities of about 20% each. Finally, effective strategies to control and tune the probabilities of DHET and DHHT processes are proposed. We envision our work to provide guidelines toward the design of metal-acceptor interfaces that enable more efficient plasmonic hot-carrier devices.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesACS Nano
dc.rightsIn Copyright
dc.subject.otherplasmon decay
dc.subject.otherdirect transfer
dc.subject.otherhot electrons
dc.subject.otherhot holes
dc.subject.othertime-dependent density-functional theory
dc.titlePlasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201903261969
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-03-26T10:15:29Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3188-3195
dc.relation.issn1936-0851
dc.relation.numberinseries3
dc.relation.volume13
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 American Chemical Society.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber295602
dc.subject.ysonanoelektroniikka
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysopuolijohteet
dc.subject.ysonanorakenteet
dc.subject.ysotodennäköisyys
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26991
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p18256
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
jyx.subject.urihttp://www.yso.fi/onto/yso/p16014
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1021/acsnano.8b08703
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundinginformationP.V.K. thanks the Marie Curie ETH Zurich Postdoctoral Fellowship for financial support. T.P.R. and P.E. acknowledge support from the Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research (SSF), and the Swedish Research Council. P.V.K. and T.P.R. also thank the network in Condensed Matter and Materials Physics (Aalto University) for support. M.K. acknowledges funding from Academy of Finland under Grant 295602. M.P. and T.P.R. thank the Academy of Finland for support through its Centres of Excellence Programme under Project 251748. P.V.K. thanks Dr. A.K. Michel for fruitful discussions. Computational resources were provided by the ETH High-Performance Computing Cluster (Euler), and by the Swedish National Infrastructure for Computing at PDC (Stockholm), NSC (Linköping), and C3SE (Gothenburg).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright