Sub-Finsler Geodesics on the Cartan Group
Ardentov, A. A., Le Donne, E., & Sachkov, Y. L. (2019). Sub-Finsler Geodesics on the Cartan Group. Regular and Chaotic Dynamics, 24(1), 36-60. https://doi.org/10.1134/S1560354719010027
Julkaistu sarjassa
Regular and Chaotic DynamicsPäivämäärä
2019Tekijänoikeudet
© 2019, Pleiades Publishing, Ltd.
This paper is a continuation of the work by the same authors on the Cartan groupequipped with the sub-Finsler∞norm. We start by giving a detailed presentation of thestructure of bang-bang extremal trajectories. Then we prove upper bounds on the number ofswitchings on bang-bang minimizers. We prove that any normal extremal is either bang-bang,or singular, or mixed. Consequently, we study mixed extremals. In particular, we prove thatevery two points can be connected by a piecewise smooth minimizer, and we give a uniformbound on the number of such pieces.
Julkaisija
Pleiades PublishingISSN Hae Julkaisufoorumista
1560-3547Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28942652
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
ERC Starting Grant; Akatemiatutkija, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
The work of A. Ardentov and Yu. Sachkov wassupported by the Russian Science Foundation under grant 17-11-01387 and performed at theAilamazyan Program Systems Institute of the Russian Academy of Sciences. E. Le Donne waspartially supported by the Academy of Finland (grant 288501 “Geometry of sub-Riemanniangroups”) and by the European Research Council (ERC Starting Grant 713998 GeoMeG “Geometryof Metric Groups”). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
Sachkov, Yuri L. (Pleiades Publishing, 2020)We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on ... -
Lipschitz Carnot-Carathéodory Structures and their Limits
Antonelli, Gioacchino; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Springer Science and Business Media LLC, 2023)In this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption ... -
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Le Donne, Enrico (De Gruyter Open, 2017)Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with ... -
A variational inequality approach to constrained control problems
Neittaanmäki, Pekka; Tiba, D. (University of Jyväskylä, 1986) -
Optimal Control Problems in Nonsmooth Solid and Fluid Mechanics : Computational Aspects
Haslinger, Jaroslav; Mäkinen, Raino A. E. (Springer, 2023)The paper is devoted to numerical realization of nonsmooth optimal control problems in solid and fluid mechanics with special emphasis on contact shape optimization and parameter identification in fluid flow models. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.