Transcranial direct current stimulation effects on cortical excitability and learning during a dorsiflexion motor task
Transcranial direct current stimulation (tDCS) is a method that could induce changes on the corticospinal excitability and enhanced motor learning. Nevertheless, research on the topic still ongoing due to the great variability of the corticospinal response and different methodologies that has been used with this device. Moreover, there is not much evidence on how it could affect to the lower limbs. Therefore, the aim of this study is to see what are the effects of a long-term exposure to tDCS and if they are maintained after its exposure. Thirteen right-footed healthy participants were recruited that were double blind and randomly assigned to different groups SHAM or STIM condition. They performed a motor task during 5 days and it was assessed 8 days after the last practice. Corticospinal measurements I/O curve, SICI and silent period were assessed before and after day 1,5 and retention day. Motor task consisted in following a sinusoidal curve displayed on a screen with an isometric force applied through a dorsiflexion of the ankle muscles. Result were no significant improvement from SHAM group from pre-to-post measurements on day 1. Non-significant results were found in the rest of the conditions, motor task error, Input/output curve, SICI or cortical Silent Period due to the dispersion of the data. Therefore, it cannot be concluded that tDCS will enhance the motor learning. However, it does increase the variability of the corticospinal excitability after its use.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29740]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Corticospinal Adaptation to Short-Term Horizontal Balance Perturbation Training
Hu, Nijia; Piirainen, Jarmo M.; Kidgell, Dawson J.; Walker, Simon; Avela, Janne (MDPI AG, 2023)Sensorimotor training and strength training can improve balance control. Currently, little is known about how repeated balance perturbation training affects balance performance and its neural mechanisms. This study ... -
Which direction should I go? : A quest for understanding the effect of TMS stimulus orientation on evoked responses
Souza, Victor; Mutanen, Tuomas; Nieminen, Jaakko; Nieminen, Aino; Sinisalo, Heikki; Parvin, Shokoofeh; Juurakko, Joona; Piitulainen, Harri; Lioumis, Pantelis; Ilmoniemi, Risto (Elsevier BV, 2023)The orientation of the electric field (E-field) induced by transcranial magnetic stimulation (TMS) plays a significant role in determining the magnitude of motor evoked potentials (MEP) and TMS-evoked potentials (TEP). ... -
The effect of transient visual deprivation on motor cortical excitability and motor learning : a pilot study
Castro, Fabio (2016)Castro, Fabio, 2015. The Effect of Transient Visual Deprivation on Motor Cortical Excitability and Motor Learning. University of Jyväskylä, Department of Biology of Physical Activity, Master Thesis in Applied Biomechanics. ... -
Progression of adverse effects over consecutive sessions of transcranial direct current stimulation
Kortteenniemi, Aaron; Javadi, Amir-Homayoun; Wikgren, Jan; Lehto, Soili M. (Elsevier, 2017) -
The effects of transcranial direct current stimulation on the reward related brain responses
Nurmela, Ira; Bergman, Valtteri (2023)Tämän tutkimuksen tarkoituksena oli selvittää, onko aivojen transkraniaalisella tasavirtastimulaatiolla (tDCS) vaikutusta palkkiopositiivisuuteen (Reward positivity, RewP). Tällä palkkiopositiivisuudella tarkoitetaan ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.