Overlapping doman decomposition methods for the obstacle problem
Kuznetsov, Yu. A., Neittaanmäki, P., Tarvainen, P. (1994). Overlapping domain decomposition methods for the obstacle problem. In A. Quarteroni, Y. A. Kuznetsov, & O. B. Widlund (Eds) Domain Decomposition Methods in Science and Engineering, pp. 271-277,
Päivämäärä
1994Pääsyrajoitukset
Tekijänoikeudet
© American Mathematical Society
In this paper overlapping domain decomposition methods are applied to the numerical
solution of nonlinear grid variational problems arising from the approximation of the obstacle
problem by the piecewise linear finite element method. This method is important for
nonlinear boundary value problems for two reasons: It provides the possibility of using
parallel processing, and, what is perhaps more important, the means for isolating the
neighbourhood of the free boundary for a special treatment. In the major part of the domain the problem is linear and traditional efficient solvers for linear problems can be applied. We give the sufficient conditions of the convergence of the method and formulate the convergence result. Moreover, we give some considerations about overlapping domain decomposition methods with monotone operations.
Julkaisija
American Mathematical SocietyEmojulkaisun ISBN
0-8218-5158-6Kuuluu julkaisuun
Domain Decomposition Methods in Science and EngineeringAsiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Biharmonic Obstacle Problem : Guaranteed and Computable Error Bounds for Approximate Solutions
Apushkinskaya, Darya E.; Repin, Sergey I. (Pleiades Publishing, 2020)The paper is concerned with an elliptic variational inequality associated with a free boundary obstacle problem for the biharmonic operator. We study the bounds of the difference between the exact solution (minimizer) of ... -
A variational inequality approach to the problem of the design of the optimal covering of an obstacle
Neittaanmäki, Pekka; Tiba, Dan; Mäkinen, Raino (Springer, 1989) -
A parallel domain decomposition method for the Helmholtz equation in layered media
Heikkola, Erkki; Ito, Kazufumi; Toivanen, Jari (Society for Industrial and Applied Mathematics, 2019)An efficient domain decomposition method and its parallel implementation for the solution of the Helmholtz equation in three-dimensional layered media are considered. A modified trilinear finite element discretization ... -
Fitting Generalized Linear Latent Variable Models using the method of Extended Variational Approximation
Korhonen, Pekka (2020)Yhteisöekologian alalla tutkijat ovat usein kiinnostuneita yhden tai useamman kasvi- tai eläinlajin välisistä esiintyvyyssuhteista eri mittauspaikoilla tai ekosysteemeissä. Tämänkaltaiset tutkimuskysymykset johtavat ... -
Approximation method for computationally expensive nonconvex multiobjective optimization problems
Haanpää, Tomi (University of Jyväskylä, 2012)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.