Show simple item record

dc.contributor.authorCort Barrada, Luis
dc.contributor.authorNielsen, Soeren Ersbak Bang
dc.contributor.authorvan Leeuwen, Robert
dc.date.accessioned2019-02-25T12:49:18Z
dc.date.available2019-02-25T12:49:18Z
dc.date.issued2019
dc.identifier.citationCort Barrada, L., Nielsen, S. E. B., & van Leeuwen, R. (2019). Strictly-correlated-electron approach to excitation energies of dissociating molecules. <i>Physical Review A</i>, <i>99</i>(2), Article 022501. <a href="https://doi.org/10.1103/PhysRevA.99.022501" target="_blank">https://doi.org/10.1103/PhysRevA.99.022501</a>
dc.identifier.otherCONVID_28935557
dc.identifier.otherTUTKAID_80748
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/62962
dc.description.abstractIn this work we consider a numerically solvable model of a two-electron diatomic molecule to study a recently proposed approximation based on the density functional theory of so-called strictly correlated electrons (SCE). We map out the full two-particle wave function for a wide range of bond distances and interaction strengths and obtain analytic results for the two-particle states and eigenenergies in various limits of strong and weak interactions, and in the limit of large bond distance. We then study the so-called Hartree-exchange-correlation (Hxc) kernel of time-dependent density functional theory which is a key ingredient in calculating excitation energies. We study an approximation based on adiabatic SCE (ASCE) theory which was shown to display a particular feature of the exact Hxc kernel, namely, a spatial divergence as function of the bond distance. This makes the ASCE kernel a candidate for correcting a notorious failure of the commonly used adiabatic local density approximation (ALDA) in the calculation of excitation energies of dissociating molecules. Unlike the ALDA, we obtain nonzero excitation energies from the ASCE kernel in the dissociation regime but they do not correspond to those of the true spectrum unless the interaction strength is taken to be very large such that the SCE theory has the right regime of validity, in which case the excitation energies become exact and represent the so-called zero-point oscillations of the strictly correlated electrons. The commonly studied physical dissociation regime, namely, large molecular separation at intermediate interaction strength, therefore remains a challenge for density functional approximations based on SCE theory.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review A
dc.rightsCC BY 4.0
dc.subject.othertwo-electron diatomic molecule
dc.subject.otherstrictly correlated electrons
dc.titleStrictly-correlated-electron approach to excitation energies of dissociating molecules
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201902221625
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-02-22T16:15:10Z
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9926
dc.relation.numberinseries2
dc.relation.volume99
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysomolekyylit
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysoapproksimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2984
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevA.99.022501


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0