On the numerical solution of Helmholtz's equation by different finite element methods
Neittaanmäki, P. (1983). On the numerical solution of Helmholtz's equation by different finite element methods. ZAMM, 63 (5), T364-T366.
Julkaistu sarjassa
ZAMMTekijät
Päivämäärä
1983Pääsyrajoitukset
Tekijänoikeudet
© Wiley
Julkaisija
WileyISSN Hae Julkaisufoorumista
0044-2267Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
An optimal local active noise control method based on stochastic finite element models
Airaksinen, Tuomas; Toivanen, Jari (Elsevier, 2013)A new method is presented to obtain a local active noise control that is optimal in stochastic environment. The method uses numerical acoustical modeling that is performed in the frequency domain by using a sequence of ... -
Spectral element method and controllability approach for time-harmonic wave propagation
Mönkölä, Sanna (University of Jyväskylä, 2008) -
On different finite element methods for approximating the gradient of the solution to the helmholtz equation
Haslinger, Jaroslav; Neittaanmäki, Pekka (North-Holland, 1984)We consider the numerical solution of the Helmholtz equation by different finite element methods. In particular, we are interested in finding an efficient method for approximating the gradient of the solution. We first ... -
Local control of sound in stochastic domains based on finite element models
Airaksinen, Tuomas; Heikkola, Erkki; Toivanen, Jari (World Scientific Publishing, 2011)A numerical method for optimizing the local control of sound in a stochastic domain is developed. A three-dimensional enclosed acoustic space, for example, a cabin with acoustic actuators in given locations is modeled ... -
A parallel domain decomposition method for the Helmholtz equation in layered media
Heikkola, Erkki; Ito, Kazufumi; Toivanen, Jari (Society for Industrial and Applied Mathematics, 2019)An efficient domain decomposition method and its parallel implementation for the solution of the Helmholtz equation in three-dimensional layered media are considered. A modified trilinear finite element discretization ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.