dc.contributor.author | Hämäläinen, Joonas | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.contributor.author | Rossi, Tuomo | |
dc.date.accessioned | 2019-02-11T11:21:55Z | |
dc.date.available | 2019-02-11T11:21:55Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Hämäläinen, J., Kärkkäinen, T., & Rossi, T. (2018). Scalable robust clustering method for large and sparse data. In <i>ESANN 2018 : Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 449-454). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-134.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-134.pdf</a> | |
dc.identifier.other | CONVID_28889218 | |
dc.identifier.other | TUTKAID_80472 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/62747 | |
dc.description.abstract | Datasets for unsupervised clustering can be large and sparse, with significant portion of missing values. We present here a scalable version of a robust clustering method with the available data strategy. Moreprecisely, a general algorithm is described and the accuracy and scalability of a distributed implementation of the algorithm is tested. The obtained results allow us to conclude the viability of the proposed approach. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | ESANN | |
dc.relation.ispartof | ESANN 2018 : Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.uri | https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-134.pdf | |
dc.rights | In Copyright | |
dc.subject.other | datasets | |
dc.subject.other | clustering | |
dc.title | Scalable robust clustering method for large and sparse data | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-201901281317 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2019-01-28T07:15:15Z | |
dc.relation.isbn | 978-2-87587-047-6 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 449-454 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2018 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.grantnumber | 311877 | |
dc.relation.grantnumber | 315550 | |
dc.subject.yso | data | |
dc.subject.yso | klusterianalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27250 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27558 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Academy of Finland | en |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundinginformation | The work of TK has been supported by the Academy of Finland from the projects 311877 (Demo) and 315550 (HNP-AI) | |
dc.type.okm | A4 | |