Benson group additivity values of phosphines and phosphine oxides : Fast and accurate computational thermochemistry of organophosphorus species
Vuori, H., Rautiainen, J. M., Kolehmainen, E., & Tuononen, H. (2019). Benson group additivity values of phosphines and phosphine oxides : Fast and accurate computational thermochemistry of organophosphorus species. Journal of Computational Chemistry, 40(3), 572-580. https://doi.org/10.1002/jcc.25740
Julkaistu sarjassa
Journal of Computational ChemistryPäivämäärä
2019Oppiaine
Epäorgaaninen ja analyyttinen kemiaOrgaaninen kemiaNanoscience CenterInorganic and Analytical ChemistryOrganic ChemistryNanoscience CenterTekijänoikeudet
© 2018 Wiley Periodicals, Inc.
Composite quantum chemical methods W1X-1 and CBS-QB3 are used to calculate the gas phase
standard enthalpy of formation, entropy and heat capacity of 38 phosphines and phosphine oxides
for which reliable experimental thermochemical information is limited or simply nonexistent. For
alkyl phosphines and phosphine oxides, the W1X-1 and CBS-QB3 results are mutually consistent and
in excellent agreement with available G3X values and empirical data. In the case of aryl-substituted
species, different computational methods show more variation, with G3X enthalpies being furthest
from experimental values. The calculated thermochemical data are subsequently used to determine
Benson group additivity contributions for 24 Benson groups and group pairs involving phosphorus,
thereby allowing fast and accurate estimations of thermochemical data of many organophosphorus
compounds of any complexity. Such data are indispensable, for example, in chemical process design
or estimating potential hazards of new chemical compounds.
...
Julkaisija
John Wiley & Sons, Inc.ISSN Hae Julkaisufoorumista
0192-8651Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28820978
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions
Hyttinen, Noora; Pihlajamäki, Antti; Häkkinen, Hannu (American Chemical Society (ACS), 2022)We have trained the Extreme Minimum Learning Machine (EMLM) machine learning model to predict chemical potentials of individual conformers of multifunctional organic compounds containing carbon, hydrogen, and oxygen. The ... -
Computational thermochemistry : extension of Benson group additivity approach to organoboron compounds and reliable predictions of their thermochemical properties
Vuori, Hannu T.; Rautiainen, J. Mikko; Kolehmainen, Erkki T.; Tuononen, Heikki M. (Royal Society of Chemistry (RSC), 2022)High-level computational data for standard gas phase enthalpies of formation, entropies, and heat capacities are reported for 116 compounds of boron. A comparison of the results with extant experimental and computational ... -
Knowledge mining of unstructured information : application to cyber domain
Takko, Tuomas; Bhattacharya, Kunal; Lehto, Martti; Jalasvirta, Pertti; Cederberg, Aapo; Kaski, Kimmo (Nature Publishing Group, 2023)Information on cyber-related crimes, incidents, and conflicts is abundantly available in numerous open online sources. However, processing large volumes and streams of data is a challenging task for the analysts and experts, ... -
Overlay databank unlocks data-driven analyses of biomolecules for all
Kiirikki, Anne M.; Antila, Hanne S.; Bort, Lara S.; Buslaev, Pavel; Favela-Rosales, Fernando; Ferreira, Tiago Mendes; Fuchs, Patrick F. J.; Garcia-Fandino, Rebeca; Gushchin, Ivan; Kav, Batuhan; Kučerka, Norbert; Kula, Patrik; Kurki, Milla; Kuzmin, Alexander; Lalitha, Anusha; Lolicato, Fabio; Madsen, Jesper J.; Miettinen, Markus S.; Mingham, Cedric; Monticelli, Luca; Nencini, Ricky; Nesterenko, Alexey M.; Piggot, Thomas J.; Piñeiro, Ángel; Reuter, Nathalie; Samantray, Suman; Suárez-Lestón, Fabián; Talandashti, Reza; Ollila, O. H. Samuli (Nature Publishing Group, 2024)Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose ... -
Handling simulation failures of a computationally expensive multiobjective optimization problem in pump design
Mazumdar, Atanu; Burkotová, Jana; Krátký, Tomáš; Chugh, Tinkle; Miettinen, Kaisa (Elsevier, 2024)Solving real-world optimization problems in engineering and design involves various practical challenges. They include simultaneously optimizing multiple conflicting objective functions that may involve computationally ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.