Chalcogenide-capped triiron clusters [Fe3(CO)9(μ3-E)2], [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] and [Fe3(CO)7(μ3-E)2(μ-dppm)] (E = S, Se) as proton-reduction catalysts
Rahaman, A., Ghosh, S., Basak-Modi, S., Abdel-Magied, A. F., Kabir, S. E., Haukka, M., Richmond, M. G., Lisensky, G. C., Nordlander, E., & Hogarth, G. (2019). Chalcogenide-capped triiron clusters [Fe3(CO)9(μ3-E)2], [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] and [Fe3(CO)7(μ3-E)2(μ-dppm)] (E = S, Se) as proton-reduction catalysts. Journal of Organometallic Chemistry, 880, 213-222. https://doi.org/10.1016/j.jorganchem.2018.10.018
Published in
Journal of Organometallic ChemistryAuthors
Date
2019Copyright
© 2018 Elsevier B.V.
Chalcogenide-capped triiron clusters [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] and [Fe3(CO)7(μ3-E)2(μ-dppm)] (E = S, Se) have been examined as proton-reduction catalysts. Protonation studies show that [Fe3(CO)9(μ3-E)2] are unaffected by strong acids. Mono-capped [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] react with HBF4.Et2O but changes in IR spectra are attributed to BF3 binding to the face-capping carbonyl, while bicapped [Fe3(CO)7(μ3-E)2(μ-dppm)] are protonated but in a process that is not catalytically important. DFT calculations are presented to support these protonation studies. Cyclic voltammetry shows that [Fe3(CO)9(μ3-Se)2] exhibits two reduction waves, and upon addition of strong acids, proton-reduction occurs at a range of potentials. Mono-chalcogenide clusters [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] (E = S, Se) exhibit proton-reduction at ca.-1.85 (E = S) and -1.62 V (E = Se) in the presence of p-toluene sulfonic acid (p-TsOH). Bicapped [Fe3(CO)7(μ3-E)2(μ-dppm)] undergo quasi-reversible reductions at -1.55 (E = S) and -1.45 V (E = Se) and reduce p-TsOH to hydrogen but protonated species do not appear to be catalytically important. Current uptake is seen at the first reduction potential in each case, showing that [Fe3(CO)7(μ3-E)2(μ-dppm)]- are catalytically active but a far greater response is seen at ca.-1.9 V being tentatively associated with reduction of [H2Fe3(CO)7(μ3-E)2(μ-dppm)]+. In general, selenide clusters are reduced at slightly lower potentials than sulfide analogues and show slightly higher current uptake under comparable conditions.
...


Publisher
Elsevier BVISSN Search the Publication Forum
0022-328XPublication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28697248
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Proton reduction by phosphinidene-capped triiron clusters
Rahaman, Ahibur; Lisensky, George C.; Haukka, Matti; Tocher, Derek A.; Richmond, Michael G.; Colbran, Stephen B.; Nordlander, Ebbe (Elsevier BV, 2021)Bis(phosphinidene)-capped triiron carbonyl clusters, including electron rich derivatives formed by substitution with chelating diphosphines, have been prepared and examined as proton reduction catalysts. Treatment of the ... -
Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction
Wu, Tongwei; Melander, Marko M.; Honkala, Karoliina (American Chemical Society (ACS), 2022)Electrochemical N2 reduction (NRR) to ammonia is seriously limited by the competing hydrogen evolution reaction (HER), but atomic-scale factors controlling HER/NRR competition are unknown. Herein we unveil the mechanism, ... -
Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces
Sakaushi, Ken; Kumeda, Tomoaki; Hammes-Schiffer, Sharon; Melander, Marko M.; Sugino, Osamu (Royal Society of Chemistry (RSC), 2020)Multi-electron, multi-proton transfer is important in a wide spectrum of processes spanning biological, chemical and physical systems. These reactions have attracted significant interest due to both fundamental curiosity ... -
Grand Canonical Rate Theory for Electrochemical and Electrocatalytic Systems I : General Formulation and Proton-coupled Electron Transfer Reactions
Melander, Marko M. (Electrochemical Society, 2020)Electrochemical interfaces present a serious challenge for atomistic modelling. Electrochemical thermodynamics are naturally addressed within the grand canonical ensemble (GCE) but the lack of a fixed potential rate theory ... -
Metal Doping of Au25(SR)18- Clusters : Insights and Hindsights
Fei, Wenwen; Antonello, Sabrina; Dainese, Tiziano; Dolmella, Alessandro; Lahtinen, Manu; Rissanen, Kari; Venzo, Alfonso; Maran, Flavio (American Chemical Society, 2019)The structure, properties, and applications of atomically precise gold nanoclusters are the object of active research worldwide. Over the last few years, research has been also focusing on selective doping of metal ...