Näytä suppeat kuvailutiedot

dc.contributor.authorGiesbertz, Klaas J. H.
dc.contributor.authorUimonen, Anna-Maija
dc.contributor.authorvan Leeuwen, Robert
dc.date.accessioned2018-11-23T06:39:10Z
dc.date.available2018-11-23T06:39:10Z
dc.date.issued2018
dc.identifier.citationGiesbertz, K. J. H., Uimonen, A.-M., & van Leeuwen, R. (2018). Approximate energy functionals for one-body reduced density matrix functional theory from many-body perturbation theory. <i>European Physical Journal B</i>, <i>91</i>(11), Article 282. <a href="https://doi.org/10.1140/epjb/e2018-90279-1" target="_blank">https://doi.org/10.1140/epjb/e2018-90279-1</a>
dc.identifier.otherCONVID_28730114
dc.identifier.otherTUTKAID_79572
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60290
dc.description.abstractWe develop a systematic approach to construct energy functionals of the one-particle reduced density matrix (1RDM) for equilibrium systems at finite temperature. The starting point of our formulation is the grand potential Ω[G] regarded as variational functional of the Green’s function G based on diagrammatic many-body perturbation theory and for which we consider either the Klein or Luttinger–Ward form. By restricting the input Green’s function to be one-to-one related to a set on one-particle reduced density matrices (1RDM) this functional becomes a functional of the 1RDM. To establish the one-to-one mapping we use that, at any finite temperature and for a given 1RDM γ in a finite basis, there exists a non-interacting system with a spatially non-local potential v[γ] which reproduces the given 1RDM. The corresponding set of non-interacting Green’s functions defines the variational domain of the functional Ω. In the zero temperature limit we obtain an energy functional E[γ] which by minimisation yields an approximate ground state 1RDM and energy. As an application of the formalism we use the Klein and Luttinger–Ward functionals in the GW-approximation to compute the binding curve of a model hydrogen molecule using an extended Hubbard Hamiltonian. We compare further to the case in which we evaluate the functionals on a Hartree–Fock and a Kohn–Sham Green’s function. We find that the Luttinger–Ward version of the functionals performs the best and is able to reproduce energies close to the GW energy which corresponds to the stationary point.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesEuropean Physical Journal B
dc.rightsCC BY 4.0
dc.subject.otherapproximate energy functionals
dc.subject.otherdensity matrix functional theory
dc.subject.othermany-body perturbation theory
dc.titleApproximate energy functionals for one-body reduced density matrix functional theory from many-body perturbation theory
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201811214816
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-11-21T13:15:24Z
dc.description.reviewstatuspeerReviewed
dc.relation.issn1434-6028
dc.relation.numberinseries11
dc.relation.volume91
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2018.
dc.rights.accesslevelopenAccessfi
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysoapproksimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1140/epjb/e2018-90279-1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0