dc.contributor.author | Groenhof, Gerrit | |
dc.contributor.author | Toppari, Jussi | |
dc.date.accessioned | 2018-09-19T07:18:40Z | |
dc.date.available | 2018-09-19T07:18:40Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Groenhof, G., & Toppari, J. (2018). Coherent Light Harvesting through Strong Coupling to Confined Light. <i>Journal of Physical Chemistry Letters</i>, <i>9</i>(17), 4848-4851. <a href="https://doi.org/10.1021/acs.jpclett.8b02032" target="_blank">https://doi.org/10.1021/acs.jpclett.8b02032</a> | |
dc.identifier.other | CONVID_28214085 | |
dc.identifier.other | TUTKAID_78541 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/59566 | |
dc.description.abstract | When photoactive molecules interact strongly with confined light modes, new hybrid light-matter states may form: the polaritons. These polaritons are coherent superpositions of excitations of the molecules and of the cavity photon. Recently, polaritons were shown to mediate energy transfer between chromophores at distances beyond the Förster limit. Here we explore the potential of strong coupling for light-harvesting applications by means of atomistic molecular dynamics simulations of mixtures of photoreactive and non-photo-reactive molecules strongly coupled to a single confined light mode. These molecules are spatially separated and present at different concentrations. Our simulations suggest that while the excitation is initially fully delocalized over all molecules and the confined light mode, it very rapidly localizes onto one of the photoreactive molecules, which then undergoes the reaction. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.ispartofseries | Journal of Physical Chemistry Letters | |
dc.rights | CC BY 4.0 | |
dc.subject.other | coherent light harvesting | |
dc.subject.other | strong coupling | |
dc.subject.other | confined light | |
dc.title | Coherent Light Harvesting through Strong Coupling to Confined Light | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201809074042 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-09-07T09:15:12Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 4848-4851 | |
dc.relation.issn | 1948-7185 | |
dc.relation.numberinseries | 17 | |
dc.relation.volume | 9 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2018 American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 290677 | |
dc.relation.grantnumber | 289947 | |
dc.subject.yso | valokemia | |
dc.subject.yso | polaritonit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7201 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38894 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acs.jpclett.8b02032 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundinginformation | This work was supported by the Academy of Finland (grants 290677 to G.G. and 289947 to J.J.T.). | |
dc.type.okm | A1 | |