dc.contributor.author | Andrieu, Christophe | |
dc.contributor.author | Lee, Anthony | |
dc.contributor.author | Vihola, Matti | |
dc.contributor.editor | Sisson, Scott A. | |
dc.contributor.editor | Fan, Yanan | |
dc.contributor.editor | Beaumont, Mark | |
dc.date.accessioned | 2018-08-31T06:56:16Z | |
dc.date.available | 2019-08-11T21:35:29Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Andrieu, C., Lee, A., & Vihola, M. (2018). Theoretical and methodological aspects of MCMC computations with noisy likelihoods. In S. A. Sisson, Y. Fan, & M. Beaumont (Eds.), <i>Handbook of Approximate Bayesian Computation : Likelihood-Free Methods for Complex Model</i> (pp. 243-268). Chapman and Hall/CRC. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. | |
dc.identifier.other | CONVID_28212480 | |
dc.identifier.other | TUTKAID_78533 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/59401 | |
dc.description.abstract | Approximate Bayesian computation (ABC) [11, 42] is a popular method for Bayesian
inference involving an intractable, or expensive to evaluate, likelihood function but where
simulation from the model is easy. The method consists of defining an alternative likelihood
function which is also in general intractable but naturally lends itself to pseudo-marginal
computations [5], hence making the approach of practical interest. The aim of this chapter
is to show the connections of ABC Markov chain Monte Carlo with pseudo-marginal algorithms,
review their existing theoretical results, and discuss how these can inform practice
and hopefully lead to fruitful methodological developments. | fi |
dc.format.extent | 662 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Chapman and Hall/CRC | |
dc.relation.ispartof | Handbook of Approximate Bayesian Computation : Likelihood-Free Methods for Complex Model | |
dc.relation.ispartofseries | Chapman & Hall/CRC Handbooks of Modern Statistical Methods | |
dc.rights | In Copyright | |
dc.subject.other | Bayesian computation | |
dc.subject.other | likelihoods | |
dc.title | Theoretical and methodological aspects of MCMC computations with noisy likelihoods | |
dc.type | bookPart | |
dc.identifier.urn | URN:NBN:fi:jyu-201808163848 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/BookItem | |
dc.date.updated | 2018-08-16T12:15:10Z | |
dc.relation.isbn | 978-1-4398-8150-7 | |
dc.type.coar | http://purl.org/coar/resource_type/c_3248 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 243-268 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © the Authors & Chapman and Hall/CRC, 2018. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 274740 | |
dc.subject.yso | todennäköisyyslaskenta | |
dc.subject.yso | bayesilainen menetelmä | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4746 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17803 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
dc.type.okm | A3 | |