An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems
Chugh, T., Sindhya, K., Hakanen, J., & Miettinen, K. (2015). An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems. In A. Gaspar-Cunha, C. H. Antunes, & C. C. Coello (Eds.), Evolutionary Multi-Criterion Optimization : 8th International Conference, EMO 2015, Guimarães, Portugal, March 29 --April 1, 2015. Proceedings, Part I (pp. 277-291). Springer. Lecture Notes in Computer Science, 9018. https://doi.org/10.1007/978-3-319-15934-8_19
Julkaistu sarjassa
Lecture Notes in Computer SciencePäivämäärä
2015Tekijänoikeudet
© Springer International Publishing Switzerland 2015
This paper presents a new preference based interactive evolutionary
algorithm (I-SIBEA) for solving multiobjective optimization
problems using weighted hypervolume. Here the decision maker iteratively
provides her/his preference information in the form of identifying
preferred and/or non-preferred solutions from a set of nondominated
solutions. This preference information provided by the decision maker
is used to assign weights of the weighted hypervolume calculation to
solutions in subsequent generations. In any generation, the weighted
hypervolume is calculated and solutions are selected to the next generation
based on their contribution to the weighted hypervolume. The
algorithm is compared with a recently developed interactive evolutionary
algorithm, W-Hype on some benchmark multiobjective optimization
problems. The results show significant promise in the use of the I-SIBEA
algorithm. In addition, the performance of the algorithm is demonstrated
using a human decision maker to show its flexibility towards changes in
the preference information. The I-SIBEA algorithm is found to flexibly
exploit the preference information from the decision maker and generate
solutions in the regions preferable to her/him.
...
Julkaisija
SpringerEmojulkaisun ISBN
978-3-319-15933-1Konferenssi
International Conference on Evolutionary Multi-Criterion OptimizationKuuluu julkaisuun
Evolutionary Multi-Criterion Optimization : 8th International Conference, EMO 2015, Guimarães, Portugal, March 29 --April 1, 2015. Proceedings, Part IISSN Hae Julkaisufoorumista
0302-9743Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/24645079
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Modified Preference-Based Hypervolume Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Liang, MaoMao; Shavazipour, Babooshka; Saini, Bhupinder; Emmerich, Michael; Miettinen, Kaisa (SCITEPRESS Science and Technology Publications, 2024)Various interactive evolutionary multiobjective optimization methods have been proposed in the literature for problems with multiple, conflicting objective functions. In these methods, a decision maker, who is a domain ... -
An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA
Ruiz, Ana B.; Luque, Mariano; Miettinen, Kaisa; Saborido, Rubén (Springer, 2015)In this paper, we describe an interactive evolutionary algorithm called Interactive WASF-GA to solve multiobjective optimization problems. This algorithm is based on a preference-based evolutionary multiobjective ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems
Aghaei pour, Pouya; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2024)We consider multiobjective optimization problems with at least one computationally expensive constraint function and propose a novel surrogate-assisted evolutionary algorithm that can incorporate preference information ... -
Distributed multi-objective optimization methods for shape design using evolutionary algorithms and game strategies
Leskinen, Jyri (University of Jyväskylä, 2012)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.