The Role of Orbital Symmetries in Enforcing Ferromagnetic Ground State in Mixed Radical Dimers
Mansikkamäki, A., & Tuononen, H. (2018). The Role of Orbital Symmetries in Enforcing Ferromagnetic Ground State in Mixed Radical Dimers. Journal of Physical Chemistry Letters, 9, 3624-3630. https://doi.org/10.1021/acs.jpclett.8b01507
Published in
Journal of Physical Chemistry LettersDate
2018Discipline
Epäorgaaninen ja analyyttinen kemiaNanoscience CenterInorganic and Analytical ChemistryNanoscience CenterCopyright
© 2018 American Chemical Society
One of the first steps in designing ferromagnetic (FM) molecular materials of p-block radicals is the suppression of covalent radical–radical interactions that stabilize a diamagnetic ground state. In this contribution, we demonstrate that FM coupling between p-block radicals can be achieved by constructing mixed dimers from different radicals with differing symmetries of their singly occupied molecular orbitals. The applicability of this approach is demonstrated by studying magnetic interactions in organic radical dimers built from different derivatives of the well-known phenalenyl radical. The calculated enthalpies of dimerization for different homo- and heterodimers show that the formation of a mixed dimer with FM coupling is favored compared to the formation of homodimers with antiferromagenetic (AFM) coupling. We argue that cocrystallization of radicals with specifically tuned morphologies of their singly occupied molecular orbitals is a feasible and promising approach in designing new organic magnetic materials.
...


Publisher
American Chemical SocietyISSN Search the Publication Forum
1948-7185Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28132339
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Project, AoF
Additional information about funding
The authors gratefully acknowledge financial support by the Academy of Finland (projects 282499 and 289172), the Foundation for Research of Natural Resources in Finland, the Technology Industries of Finland Centennial Foundation, and the University of Jyväskylä. Computational resources were provided by CSC-IT Center for Science in Finland, the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533), and the University of Jyväskylä.

License
Related items
Showing items with similar title or keywords.
-
Coordination Complexes of a Neutral 1,2,4-Benzotriazinyl Radical Ligand: Synthesis, Molecular and Electronic Structures, and Magnetic Properties
Morgan, Ian; Mansikkamäki, Akseli; Zissimou, Georgia A.; Koutentis, Panayoitis A.; Rouzières, Mathieu; Clérac, Rodolphe; Tuononen, Heikki (Wiley - VCH Verlag GmbH & Co. KGaA, 2015)A series of d-block metal complexes of the recently reported coordinating neutral radical ligand 1-phenyl-3-(pyrid-2-yl)-1,4-dihydro-1,2,4-benzotriazin-4-yl (1) was synthesized. The investigated systems contain the ... -
Polymorphism in a π stacked Blatter radical : structures and magnetic properties of 3-(phenyl)-1-(pyrid-2-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl
Constantinides, Christos P.; Lawson, Daniel B.; Zissimou, Georgia A.; Berezin, Andrey A.; Mailman, Aaron; Manoli, Maria; Kourtellaris, Andreas; Leitus, Gregory M.; Clérac, Rodolphe; Tuononen, Heikki M.; Koutentis, Panayiotis A. (Royal Society of Chemistry, 2020)3-(Phenyl)-1-(pyrid-2-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (2) demonstrates the first example of polymorphism in the family of Blatter radicals. Two polymorphs, 2α and 2β, have been identified and characterized by ... -
Room-Temperature Magnetic Bistability in a Salt of Organic Radical Ions
Taponen, Anni I.; Ayadi, Awatef; Lahtinen, Manu K.; Oyarzabal, Itziar; Bonhommeau, Sébastien; Rouzières, Mathieu; Mathonière, Corine; Tuononen, Heikki M.; Clérac, Rodolphe; Mailman, Aaron (American Chemical Society (ACS), 2021)Cocrystallization of 7,7′,8,8′-tetracyanoquinodimethane radical anion (TCNQ–•) and 3-methylpyridinium-1,2,3,5-dithiadiazolyl radical cation (3-MepyDTDA+•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) ... -
Ferromagnetic kinetic exchange interaction in magnetic insulators
Huang, Zhishuo; Liu, Dan; Mansikkamäki, Akseli; Vieru, Veacheslav; Iwahara, Naoya; Chibotaru, Liviu F. (American Physical Society (APS), 2020)The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms or groups. Here we show that ... -
Magnetoelectric effects in superconductor/ferromagnet bilayers
Rabinovich, D. S.; Bobkova, I. V.; Bobkov, A. M.; Silaev, M. A. (American Physical Society, 2019)We demonstrate that the hybrid structures consisting of a superconducting layer with an adjacent spin-textured ferromagnet demonstrate the variety of equilibrium magnetoelectric effects originating from coupling between ...