dc.contributor.author | Walz, R. | |
dc.contributor.author | Boguslavski, Kirill | |
dc.contributor.author | Berges, J. | |
dc.date.accessioned | 2018-06-25T07:50:31Z | |
dc.date.available | 2018-06-25T07:50:31Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Walz, R., Boguslavski, K., & Berges, J. (2018). Large-N kinetic theory for highly occupied systems. <i>Physical Review D</i>, <i>97</i>(11), Article 116011. <a href="https://doi.org/10.1103/PhysRevD.97.116011" target="_blank">https://doi.org/10.1103/PhysRevD.97.116011</a> | |
dc.identifier.other | CONVID_28111431 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/58717 | |
dc.description.abstract | We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components
N
of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-
N
kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-
N
kinetic equation for a highly occupied system far from equilibrium. This allows us to compute the universal scaling form of the distribution function at an infrared nonthermal fixed point within a kinetic description, and we compare to existing lattice field theory simulation results. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review D | |
dc.rights | CC BY 4.0 | |
dc.subject.other | finite temperature field theory | |
dc.subject.other | relativistic heavy-ion collisions | |
dc.subject.other | nonperturbative effects in field theory | |
dc.subject.other | ultracold gases | |
dc.title | Large-N kinetic theory for highly occupied systems | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201806253331 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Fysiikka | fi |
dc.contributor.oppiaine | Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-06-25T06:15:15Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2470-0010 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 97 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Authors. Published by the American Physical Society. Funded by SCOAP3. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 681707 | |
dc.relation.grantnumber | 681707 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/681707/EU//CGCglasmaQGP | |
dc.subject.yso | kvanttikenttäteoria | |
dc.subject.yso | dynamiikka | |
dc.subject.yso | sironta | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27496 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4095 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1026 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1103/PhysRevD.97.116011 | |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | European Commission | en |
jyx.fundingprogram | ERC European Research Council, H2020 | fi |
jyx.fundingprogram | ERC European Research Council, H2020 | en |
jyx.fundinginformation | We thank J. P. Blaizot, I. Chantesana, T. Gasenzer, A. Kurkela, T. Lappi, A. Piñeiro Orioli, S. Schlichting, and R. Venugopalan for useful discussions and collaborations on related work. K. B. gratefully acknowledges support by the European Research Council under Grant No. ERC-2015-COG-681707. This work is part of and supported by the DFG Collaborative Research Centre “SFB 1225 (ISOQUANT).” | |
dc.type.okm | A1 | |