Experimental evidence on microwave induced electron losses from ECRIS plasma
Sakildien, M., Tarvainen, O., Kronholm, R., Izotov, I., Skalyga, V., Kalvas, T., Jones, P., & Koivisto, H. (2018). Experimental evidence on microwave induced electron losses from ECRIS plasma. Physics of Plasmas, 25(6), Article 062502. https://doi.org/10.1063/1.5029443
Julkaistu sarjassa
Physics of PlasmasTekijät
Päivämäärä
2018Tekijänoikeudet
© AIP Publishing.
The balance between warm and hot (>1 keV) electron density and their losses from the magnetic confinement system of an Electron Cyclotron Resonance Ion Source (ECRIS) plasma is considered to be one of the main factors determining the rate of the high charge state ion production. One of the key loss channels for heated electrons is thought to be induced by the injected microwaves. While this loss mechanism, referred to as rf-induced pitch angle scattering, has been studied theoretically and with computational tools, direct experimental evidence of its significance in minimum-B ECRIS plasmas remains limited. In this work, experimental evidence of microwave induced electron losses in the axial direction is presented in both continuous wave (CW) and pulsed operation of a 14 GHz ECRIS. In the CW mode, the experiment was carried out by comparing the characteristic X-ray emission from the plasma volume and from the surface of the biased disc located in the flux of the escaping electron at the axial magnetic mirror. Parametric sweeps of magnetic field, neutral gas pressure, and microwave power were conducted to determine their effect on electron losses. In the pulsed mode, the experiment was conducted by measuring the flux of escaping electrons through aluminum foils of different thicknesses providing some energy resolution. Both diagnostics support the view that rf-induced losses account for up to 70% of total hot electron losses and their importance depends on the source parameters, especially power and neutral gas pressure.
...
Julkaisija
AIP Publishing LLCISSN Hae Julkaisufoorumista
1070-664XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28101503
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Influence of axial mirror ratios on the kinetic instability threshold in electron cyclotron resonance ion source plasma
Toivanen, V.; Bhaskar, B. S.; Koivisto, H.; Maunoury, L.; Tarvainen, O.; Thuillier, T. (American Institute of Physics, 2022)Electron Cyclotron Resonance (ECR) ion source plasmas are prone to kinetic instabilities. The onset of the instabilities manifests as emission of microwaves, bursts of electrons expelled from the plasma volume, and the ... -
Plasma response to amplitude modulation of the microwave power on a 14 GHz electron cyclotron resonance ion source
Neben, Derek; Tarvainen, Olli; Kronholm, Risto; Koivisto, Hannu; Kalvas, Taneli; Machicoane, Guillaume; Leitner, Daniela (AIP Publishing, 2018)This paper reports the effects of sinusoidal microwave power Amplitude Modulation (AM) on the performance of Electron Cyclotron Resonance (ECR) ion sources. The study was conducted on the 14 GHz ECR ion source ECR2 at the ... -
Microwave photoassisted dissipation and supercurrent of a phase-biased graphene-superconductor ring
Dou, Ziwei; Wakamura, Taro; Virtanen, Pauli; Wu, Nian-Jheng; Deblock, Richard; Autier-Laurent, Sandrine; Watanabe, Kenji; Taniguchi, Takashi; Guéron, Sophie; Bouchiat, Hélène; Ferrier, Meydi (American Physical Society (APS), 2021)Irradiating normal-superconducting junctions with microwave photons produce spectacular effects, such as Shapiro steps and photoinduced modifications of the dc supercurrent. Moreover, microwave irradiation can also have ... -
The effect of microwave power on the Ar9+ and Ar13+ optical emission intensities and ion beam currents in ECRIS
Kronholm, Risto; Sakildien, M.; Neben, D.; Koivisto, Hannu; Kalvas, Taneli; Tarvainen, Olli; Laulainen, J.; Jones, P. (AIP Publishing, 2018)The production of Ar9+ and Ar13+ ions in an ECRIS plasma and the efficiency of the ion beam extraction and transport of the resulting Ar9+ and Ar13+ ion beams have been studied with the JYFL 14 GHz ECRIS by using optical ... -
Microwave Emission from ECR Plasmas under Conditions of Two-Frequency Heating Induced by Kinetic Instabilities
Skalyga, Vadim; Izotov, Ivan; Mansfeld, Dmitry; Tarvainen, Olli; Kalvas, Taneli; Laulainen, Janne; Kronholm, Risto; Komppula, Jani; Koivisto, Hannu (AIP Publishing, 2018)Multiple frequency heating is one of the most effective techniques to improve the performances of ECR ion sources. It has been demonstrated that the appearance of the periodic ion beam current oscillations in ECRIS at high ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.