Näytä suppeat kuvailutiedot

dc.contributor.authorTakala, Heikki
dc.contributor.authorLehtivuori, Heli
dc.contributor.authorBerntsson, Oskar
dc.contributor.authorHughes, Ashley
dc.contributor.authorNanekar, Rahul
dc.contributor.authorNiebling, Stephan
dc.contributor.authorPanman, Matthijs
dc.contributor.authorHenry, Léocadie
dc.contributor.authorMenzel, Andreas
dc.contributor.authorWestenhoff, Sebastian
dc.contributor.authorIhalainen, Janne
dc.date.accessioned2018-06-11T06:03:03Z
dc.date.available2019-04-07T21:35:15Z
dc.date.issued2018
dc.identifier.citationTakala, H., Lehtivuori, H., Berntsson, O., Hughes, A., Nanekar, R., Niebling, S., Panman, M., Henry, L., Menzel, A., Westenhoff, S., & Ihalainen, J. (2018). On the (un)coupling of the chromophore, tongue interactions and overall conformation in a bacterial phytochrome. <i>Journal of Biological Chemistry</i>, <i>293</i>(21), 8161-8172. <a href="https://doi.org/10.1074/jbc.ra118.001794" target="_blank">https://doi.org/10.1074/jbc.ra118.001794</a>
dc.identifier.otherCONVID_27986265
dc.identifier.otherTUTKAID_77277
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/58478
dc.description.abstractPhytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light–absorbing (Pr) and far-red light–absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr263) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD–PHY fragments, we show that the absence of the Tyr263 hydroxyl destabilizes the β-sheet conformation of the tongue. This allowed the phytochrome to adopt an α-helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr263 in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Society for Biochemistry and Molecular Biology, Inc.
dc.relation.ispartofseriesJournal of Biological Chemistry
dc.rightsIn Copyright
dc.subject.otherphytochrome
dc.subject.otherphotoreceptor
dc.subject.othermutagenesis
dc.subject.otherphotoconversion
dc.subject.otherprotein structure
dc.subject.otherstructural biology
dc.subject.otherprotein conformation
dc.subject.otherchromophore-binding domain
dc.titleOn the (un)coupling of the chromophore, tongue interactions and overall conformation in a bacterial phytochrome
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201805302920
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-05-30T12:15:07Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange8161-8172
dc.relation.issn0021-9258
dc.relation.numberinseries21
dc.relation.volume293
dc.type.versionpublishedVersion
dc.rights.copyright© 2018 Takala et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber277194
dc.relation.grantnumber296135
dc.subject.ysoproteiinit
dc.subject.ysofotobiologia
dc.subject.ysosoluviestintä
dc.subject.ysoröntgenkristallografia
dc.subject.ysobakteerit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4332
jyx.subject.urihttp://www.yso.fi/onto/yso/p27666
jyx.subject.urihttp://www.yso.fi/onto/yso/p28740
jyx.subject.urihttp://www.yso.fi/onto/yso/p29058
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1074/jbc.ra118.001794
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis work was supported by Academy of Finland Grants 285461 (to H. T.), 277194 (to H. L.), and 296135 (to J. A. I.); the Foundation of Strategic Research, Sweden, Grant FFL09-0106, and European Research Council, Agreement 279944 (to S. W.); the Emil Aaltonen Foundation (to H. L.); and Jane and Aatos Erkko Foundation (to J. A. I.). The authors declare that they have no conflicts of interest with the contents of this article.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright