dc.contributor.author | Tuominen, Sakari | |
dc.contributor.author | Näsi, Roope | |
dc.contributor.author | Honkavaara, Eija | |
dc.contributor.author | Balazs, Andras | |
dc.contributor.author | Hakala, Teemu | |
dc.contributor.author | Viljanen, Niko | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Saari, Heikki | |
dc.contributor.author | Ojanen, Harri | |
dc.date.accessioned | 2018-06-04T06:23:41Z | |
dc.date.available | 2018-06-04T06:23:41Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Tuominen, S., Näsi, R., Honkavaara, E., Balazs, A., Hakala, T., Viljanen, N., Pölönen, I., Saari, H., & Ojanen, H. (2018). Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity. <i>Remote Sensing</i>, <i>10</i>(5), Article 714. <a href="https://doi.org/10.3390/rs10050714" target="_blank">https://doi.org/10.3390/rs10050714</a> | |
dc.identifier.other | CONVID_28076309 | |
dc.identifier.other | TUTKAID_77762 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/58309 | |
dc.description.abstract | Recognition of tree species and geospatial information on tree species composition is
essential for forest management. In this study, tree species recognition was examined using
hyperspectral imagery from visible to near-infrared (VNIR) and short-wave infrared (SWIR) camera
sensors in combination with a 3D photogrammetric canopy surface model based on RGB camera
stereo-imagery. An arboretum with a diverse selection of 26 tree species from 14 genera was used as
a test area. Aerial hyperspectral imagery and high spatial resolution photogrammetric color imagery
were acquired from the test area using unmanned aerial vehicle (UAV) borne sensors. Hyperspectral
imagery was processed to calibrated reflectance mosaics and was tested along with the mosaics
based on original image digital number values (DN). Two alternative classifiers, a k nearest neighbor
method (k-nn), combined with a genetic algorithm and a random forest method, were tested for
predicting the tree species and genus, as well as for selecting an optimal set of remote sensing features
for this task. The combination of VNIR, SWIR, and 3D features performed better than any of the
data sets individually. Furthermore, the calibrated reflectance values performed better compared
to uncorrected DN values. These trends were similar with both tested classifiers. Of the classifiers,
the k-nn combined with the genetic algorithm provided consistently better results than the random
forest algorithm. The best result was thus achieved using calibrated reflectance features from VNIR
and SWIR imagery together with 3D point cloud features; the proportion of correctly-classified trees
was 0.823 for tree species and 0.869 for tree genus. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.ispartofseries | Remote Sensing | |
dc.rights | CC BY 4.0 | |
dc.subject.other | hyperspectral imagery | |
dc.subject.other | tree species recognition | |
dc.subject.other | dense point cloud | |
dc.subject.other | reflectance calibration | |
dc.subject.other | UAV | |
dc.subject.other | random forest | |
dc.subject.other | genetic algorithm | |
dc.title | Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201805312962 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-05-31T12:15:06Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2072-4292 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 10 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors, 2018. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | kaukokartoitus | |
dc.subject.yso | ilmakuvakartoitus | |
dc.subject.yso | spektrikuvaus | |
dc.subject.yso | puusto | |
dc.subject.yso | lajinmääritys | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | geneettiset algoritmit | |
dc.subject.yso | fotogrammetria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2521 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2520 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26364 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13847 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17523 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7987 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2525 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.3390/rs10050714 | |
dc.type.okm | A1 | |