Practical Approach for Hyperspectral Image Processing in Python
Annala, L., Eskelinen, M., Hämäläinen, J., Riihinen, A., & Pölönen, I. (2018). Practical Approach for Hyperspectral Image Processing in Python. In J. Jiang, A. Shaker, H. Zhang, X. Liang, B. Osmanoglu, U. Soergel, E. Honkavaara, M. Scaioni, J. Zhang, A. Peled, L. Wu, R. Li, M. Yoshimura, K. Di, T. J. Tanzi, H. M. Abdulmuttalib, F. S. Faruque, U. Stilla, & K. Komp (Eds.), ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing” (pp. 45-52). International Society for Photogrammetry and Remote Sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3. https://doi.org/10.5194/isprs-archives-XLII-3-45-2018
Published in
International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesDate
2018Copyright
© Authors 2018
Python is a very popular programming language among data scientists around the world. Python can also be used in hyperspectral
data analysis. There are some toolboxes designed for spectral imaging, such as Spectral Python and HyperSpy, but there is a need for
analysis pipeline, which is easy to use and agile for different solutions. We propose a Python pipeline which is built on packages xarray,
Holoviews and scikit-learn. We have developed some of own tools, MaskAccessor, VisualisorAccessor and a spectral index library.
They also fulfill our goal of easy and agile data processing. In this paper we will present our processing pipeline and demonstrate it in
practice.
Publisher
International Society for Photogrammetry and Remote SensingConference
Congress of the International Society for Photogrammetry and Remote SensingIs part of publication
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”ISSN Search the Publication Forum
1682-1750Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28042967
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
A Do-It-Yourself Hyperspectral Imager Brought to Practice with Open-Source Python
Riihiaho, Kimmo Aukusti; Eskelinen, Matti Aleksanteri; Pölönen, Ilkka (MDPI AG, 2021)Commercial hyperspectral imagers (HSIs) are expensive and thus unobtainable for large audiences or research groups with low funding. In this study, we used an existing do-it-yourself push-broom HSI design for which we ... -
Minimal learning machine in hyperspectral imaging classification
Hakola, Anna-Maria; Pölönen, Ilkka (SPIE, 2020)A hyperspectral (HS) image is typically a stack of frames, where each frame represents the intensity of a different wavelength of light. Each spatial pixel has a spectrum. In the classification of the HS image, each spectrum ... -
SciPy 1.0 : fundamental algorithms for scientific computing in Python
Virtanen, Pauli; Gommers, Ralf; Oliphant, Travis E.; Haberland, Matt, Reddy, Tyler; Cournapeau, David; Burovski, Evgeni; Peterson, Pearu; Weckesser, Warren; Bright, Jonathan; van der Walt, Stéfan J.; Brett, Matthew; Wilson, Joshua; Millman, K. Jarrod; Mayorov, Nikolay; Nelson, Andrew R. J.; Jones, Eric; Kern, Robert; Larson, Eric; Carey, C. J.; Polat, İlhan; Feng, Yu; Moore, Eric W.; VanderPlas, Jake; Laxalde, Denis; Perktold, Josef; Cimrman, Robert; Henriksen, Ian; Quintero, E. A.; Harris, Charles R.; Archibald, Anne M.; Ribeiro, Antônio H.; Pedregosa, Fabian; van Mulbregt, Paul; SciPy 1.0 Contributors (Nature Publishing Group, 2020)SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over ... -
Approaches and challenges of automatic vulnerability classification using natural language processing and machine learning techniques
Jormakka, Ossi (2019)Automatisoitu haavoittuvuuksien etsiminen ja haavoittuvuuksien yksityiskohtien ennustaminen voi auttaa asiantuntijoita priorisoimaan ohjelmistovirheitä, joka voi johtaa nopeampaan virheenkorjaukseen. Tässä työssä käytettiin ... -
Deep learning approach for prediction of impact peak appearance at ground reaction force signal of running activity
Girka, Anastasiia; Kulmala, Juha-Pekka; Äyrämö, Sami (Taylor & Francis, 2020)Protruding impact peak is one of the features of vertical ground reaction force (GRF) that is related to injury risk while running. The present research is dedicated to predicting GRF impact peak appearance by setting a ...