Show simple item record

dc.contributor.authorALICE Collaboration
dc.date.accessioned2018-02-06T06:53:09Z
dc.date.available2018-02-06T06:53:09Z
dc.date.issued2018
dc.identifier.citationALICE Collaboration. (2018). Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at √sNN = 2.76 TeV. <i>Physics Letters B</i>, <i>777</i>, 151-162. <a href="https://doi.org/10.1016/j.physletb.2017.12.021" target="_blank">https://doi.org/10.1016/j.physletb.2017.12.021</a>
dc.identifier.otherCONVID_27891027
dc.identifier.otherTUTKAID_76750
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/57004
dc.description.abstractIn ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at sNN=2.76 TeV. The two-particle correlator 〈cos⁡(φα−φβ)〉, calculated for different combinations of charges α and β, is almost independent of v2 (for a given centrality), while the three-particle correlator 〈cos⁡(φα+φβ−2Ψ2)〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofseriesPhysics Letters B
dc.subject.otherheavy-ion collisions
dc.subject.otherEvent Shape Engineering
dc.titleConstraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at √sNN = 2.76 TeV
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201802051424
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-02-05T13:15:07Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange151-162
dc.relation.issn0370-2693
dc.relation.numberinseries0
dc.relation.volume777
dc.type.versionpublishedVersion
dc.rights.copyright© 2017 The Author(s). Published by Elsevier B.V. This is an open access article distributed under the terms of the Creative Commons License. Funded by SCOAP3.
dc.rights.accesslevelopenAccessfi
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.physletb.2017.12.021


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article distributed under the terms of the Creative Commons License. Funded by SCOAP3.
Except where otherwise noted, this item's license is described as © 2017 The Author(s). Published by Elsevier B.V. This is an open access article distributed under the terms of the Creative Commons License. Funded by SCOAP3.