Fast Computation by Subdivision of Multidimensional Splines and Their Applications
Averbuch, A., Neittaanmäki, P., Shabat, G., & Zheludev, V. (2016). Fast Computation by Subdivision of Multidimensional Splines and Their Applications. Pure and Applied Functional Analysis, 1(3), 309-341. http://www.ybook.co.jp/online2/oppafa/vol1/p309.html
Julkaistu sarjassa
Pure and Applied Functional AnalysisPäivämäärä
2016Tekijänoikeudet
© 2016 Yokohama Publishers. This is a final draft version of an article whose final and definitive form has been published by Yokohama Publishers. Published in this repository with the kind permission of the publisher.
We present theory and algorithms for fast explicit computations of
uni- and multi-dimensional periodic splines of arbitrary order at triadic rational
points and of splines of even order at diadic rational points. The algorithms
use the forward and the inverse Fast Fourier transform (FFT). The implementation
is as fast as FFT computation. The algorithms are based on binary and
ternary subdivision of splines. Interpolating and smoothing splines are used for a
sample rate convertor such as resolution upsampling of discrete-time signals and
digital images and restoration of decimated images that were contaminated by
noise. The performance of the rate conversion based spline is compared with the
performance of the rate conversion by prolate spheroidal wave functions.
Julkaisija
Yokohama PublishersISSN Hae Julkaisufoorumista
2189-3756Asiasanat
Alkuperäislähde
http://www.ybook.co.jp/online2/oppafa/vol1/p309.htmlJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26126790
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals
Laukkarinen, Eija (2020)We consider Malliavin smoothness of random variables f(X1), where X is a purejump Lévy process and the functionfis either bounded and Hölder continuousor of bounded variation. We show that Malliavin differentiability and ... -
Poincaré Type Inequalities for Vector Functions with Zero Mean Normal Traces on the Boundary and Applications to Interpolation Methods
Repin, Sergey (Springer, 2019)We consider inequalities of the Poincaré–Steklov type for subspaces of H1 -functions defined in a bounded domain Ω∈Rd with Lipschitz boundary ∂Ω . For scalar valued functions, the subspaces are defined by zero mean ... -
Local cubic splines on non-uniform grids and real-time computation of wavelet transform
Averbuch, Amir; Neittaanmäki, Pekka; Shefi, Etay; Zheludev, Valery (Springer New York LLC, 2017)In this paper, local cubic quasi-interpolating splines on non-uniform grids are described. The splines are designed by fast computational algorithms that utilize the relation between splines and cubic interpolation ... -
On fractional smoothness and Lp-approximation on the Wiener space
Geiss, Stefan; Toivola, Anni (Institute of Mathematical Statistics, 2015) -
Research for JYU : An AI-Driven, Fully Remote Mobile Application for Functional Exercise Testing
Cronin, Neil; Lehtiö, Ari; Talaskivi, Jussi (Springer, 2024)As people live longer, the incidence and severity of health problems increases, placing strain on healthcare systems. There is an urgent need for resource-wise approaches to healthcare. We present a system built using ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.