dc.contributor.author | Graham, Cameron M. E. | |
dc.contributor.author | Valjus, Juuso | |
dc.contributor.author | Pritchard, Taylor E. | |
dc.contributor.author | Boyle, Paul D. | |
dc.contributor.author | Tuononen, Heikki | |
dc.contributor.author | Ragogna, Paul J. | |
dc.date.accessioned | 2017-11-13T05:53:46Z | |
dc.date.available | 2018-10-14T21:35:40Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Graham, C. M. E., Valjus, J., Pritchard, T. E., Boyle, P. D., Tuononen, H., & Ragogna, P. J. (2017). Phosphorus-Chalcogen Ring Expansion and Metal Coordination. <i>Inorganic Chemistry</i>, <i>56</i>(21), 13500-13509. <a href="https://doi.org/10.1021/acs.inorgchem.7b02217" target="_blank">https://doi.org/10.1021/acs.inorgchem.7b02217</a> | |
dc.identifier.other | CONVID_27289132 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/55840 | |
dc.description.abstract | The reactivity of 4-membered (RPCh)2 rings (Ch = S, Se) that contain phosphorus in the +3 oxidation state is reported. These compounds undergo ring expansion to (RPCh)3 with the addition of a Lewis base. The 6-membered rings were found to be more stable than the 4-membered precursors, and the mechanism of their formation was investigated experimentally and by density functional theory calculations. The computational work identified two plausible mechanisms involving a phosphinidene chalcogenide intermediate, either as a free species or stabilized by a suitable base. Both the 4- and 6-membered rings were found to react with coinage metals, giving the same products: (RPCh)3 rings bound to the metal center from the phosphorus atom in tripodal fashion. | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.ispartofseries | Inorganic Chemistry | |
dc.subject.other | phosphorus-chalcogen | |
dc.subject.other | ring expansion | |
dc.subject.other | metal coordination | |
dc.title | Phosphorus-Chalcogen Ring Expansion and Metal Coordination | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201711084165 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-11-08T10:15:11Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 13500-13509 | |
dc.relation.issn | 0020-1669 | |
dc.relation.numberinseries | 21 | |
dc.relation.volume | 56 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2017 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by ACS. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.1021/acs.inorgchem.7b02217 | |
dc.type.okm | A1 | |