dc.contributor.author | Tsatsishvili, Valeri | |
dc.date.accessioned | 2017-11-10T13:05:52Z | |
dc.date.available | 2017-11-10T13:05:52Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 978-951-39-7240-0 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1737786 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/55833 | |
dc.description.abstract | Interest towards higher ecological validity in functional magnetic resonance
imaging (fMRI) experiments has been steadily growing since the turn of
millennium. The trend is reflected in increasing amount of naturalistic
experiments, where participants are exposed to the real-world complex stimulus
and/or cognitive tasks such as watching movie, playing video games, or
listening to music. Multifaceted stimuli forming parallel streams of input
information, combined with reduced control over experimental variables
introduces number of methodological challenges associated with isolating brain
responses to individual events.
This exploratory work demonstrated some of those methodological challenges by applying widely used data-driven methods to real fMRI data elicited
from continuous music listening experiment. Under the general goal of finding
functional networks of brain regions involved in music processing, this work
contributed to improvement of the methodology from two perspectives. One is
to produce a set of representative features for stimulus audio that can capture
different aspects of music, such as timbre and tonality. Another is to improve
reliability and quality of separation of the observed brain activations into independent spatial patterns. Improved separation in turn enables better differentiation of stimulus-related activations from the ones originating from unrelated
physiological, cognitive, or technical processes.
More specifically, part of the research explored an application of a nonlinear
method for generating perceptually relevant stimulus features representing
high-level concepts in music. Another part addressed dimensionality reduction
and model order estimation problem before subjecting fMRI data to source separation and offered few methodological developments in this regard. | |
dc.format.extent | 1 verkkoaineisto (51 sivua, 35 sivua useina numerointijaksoina, 11 numeroimatonta sivua) : kuvitettu | |
dc.language.iso | eng | |
dc.publisher | University of Jyväskylä | |
dc.relation.ispartofseries | Jyväskylä studies in computing | |
dc.relation.isversionof | Julkaistu myös painettuna. | |
dc.rights | In Copyright | |
dc.subject.other | CCA | |
dc.subject.other | ICA | |
dc.subject.other | PCA | |
dc.subject.other | dimension pienennys | |
dc.subject.other | fMRI | |
dc.subject.other | kernel PCA dimension reduction | |
dc.subject.other | naturalistic experiment | |
dc.subject.other | pääkomponenttianalyysi | |
dc.title | Data-driven analysis for fMRI during naturalistic music listening | |
dc.type | Diss. | |
dc.identifier.urn | URN:ISBN:978-951-39-7240-0 | |
dc.type.dcmitype | Text | en |
dc.type.ontasot | Väitöskirja | fi |
dc.type.ontasot | Doctoral dissertation | en |
dc.contributor.tiedekunta | Faculty of Information Technology | en |
dc.contributor.tiedekunta | Informaatioteknologian tiedekunta | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.relation.issn | 1456-5390 | |
dc.relation.numberinseries | 268 | |
dc.rights.accesslevel | openAccess | |
dc.subject.yso | toiminnallinen magneettikuvaus | |
dc.subject.yso | signaalianalyysi | |
dc.subject.yso | kognitiiviset prosessit | |
dc.subject.yso | aivot | |
dc.subject.yso | musiikki | |
dc.subject.yso | kuunteleminen | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |