Show simple item record

dc.contributor.authorTuominen, S.
dc.contributor.authorNäsi, R.
dc.contributor.authorHonkavaara, E.
dc.contributor.authorBalazs, A.
dc.contributor.authorHakala, T.
dc.contributor.authorViljanen, N.
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorSaari, H.
dc.contributor.authorReinikainen, J.
dc.contributor.editorHonkavaara, E.
dc.contributor.editorHu, B.
dc.contributor.editorKarantzalos, K.
dc.contributor.editorLiang, X.
dc.contributor.editorMüller, R.
dc.contributor.editorNocerino, E.
dc.contributor.editorPölönen, Ilkka
dc.contributor.editorRönnholm, P.
dc.date.accessioned2017-11-08T06:06:57Z
dc.date.available2017-11-08T06:06:57Z
dc.date.issued2017
dc.identifier.citationTuominen, S., Näsi, R., Honkavaara, E., Balazs, A., Hakala, T., Viljanen, N., Pölönen, I., Saari, H., & Reinikainen, J. (2017). Tree Species Recognition in Species Rich Area Using UAV-Borne Hyperspectral Imagery and Stereo-Photogrammetric Point Cloud. In E. Honkavaara, B. Hu, K. Karantzalos, X. Liang, R. Müller, E. Nocerino, I. Pölönen, & P. Rönnholm (Eds.), <i>ISPRS SPEC3D 2017 : Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions</i> (pp. 185-194). International Society for Photogrammetry and Remote Sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W3. <a href="https://doi.org/10.5194/isprs-archives-XLII-3-W3-185-2017" target="_blank">https://doi.org/10.5194/isprs-archives-XLII-3-W3-185-2017</a>
dc.identifier.otherCONVID_27317567
dc.identifier.otherTUTKAID_75509
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/55801
dc.description.abstractRecognition of tree species and geospatial information of tree species composition is essential for forest management. In this study we test tree species recognition using hyperspectral imagery from VNIR and SWIR camera sensors in combination with 3D photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum forest with a high number of tree species was used as a test area. The imagery was acquired from the test area using UAV-borne cameras. Hyperspectral imagery was calibrated for providing a radiometrically corrected reflectance mosaic, which was tested along with the original uncalibrated imagery. Alternative estimators were tested for predicting tree species and genus, as well as for selecting an optimal set of remote sensing features for this task. All tested estimators gave similar trend in the results: the calibrated reflectance values performed better in predicting tree species and genus compared to uncorrected hyperspectral pixel values. Furthermore, the combination of VNIR, SWIR and 3D features performed better than any of the data sets individually, with calibrated reflectances and original pixel values alike. The highest proportion of correctly classified trees was achieved using calibrated reflectance features from VNIR and SWIR imagery together with 3D point cloud features: 0.823 for tree species and 0.869 for tree genus.
dc.language.isoeng
dc.publisherInternational Society for Photogrammetry and Remote Sensing
dc.relation.ispartofISPRS SPEC3D 2017 : Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions
dc.relation.ispartofseriesInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.relation.urihttps://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W3/185/2017/isprs-archives-XLII-3-W3-185-2017.pdf
dc.subject.otherhyperspectral imaging
dc.subject.otherUAVs
dc.subject.otherstereo-photogrammetry
dc.subject.otherphotogrammetric point cloud
dc.subject.othertree species recognition
dc.titleTree Species Recognition in Species Rich Area Using UAV-Borne Hyperspectral Imagery and Stereo-Photogrammetric Point Cloud
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-201711024117
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2017-11-02T13:15:11Z
dc.type.coarconference paper
dc.description.reviewstatuspeerReviewed
dc.format.pagerange185-194
dc.relation.issn1682-1750
dc.type.versionpublishedVersion
dc.rights.copyright© Authors 2017. This is an open access article distributed under the terms of the Creative Commons License.
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceCongress of the International Society for Photogrammetry and Remote Sensing
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.5194/isprs-archives-XLII-3-W3-185-2017


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© Authors 2017. This is an open access article distributed under the terms of the Creative Commons License.
Except where otherwise noted, this item's license is described as © Authors 2017. This is an open access article distributed under the terms of the Creative Commons License.