Näytä suppeat kuvailutiedot

dc.contributor.authorRossi, Tuomas P.
dc.contributor.authorKuisma, Mikael
dc.contributor.authorPuska, Martti J.
dc.contributor.authorNieminen, Risto M.
dc.contributor.authorErhart, Paul
dc.date.accessioned2017-10-27T10:07:32Z
dc.date.available2018-09-02T21:35:45Z
dc.date.issued2017
dc.identifier.citationRossi, T. P., Kuisma, M., Puska, M. J., Nieminen, R. M., & Erhart, P. (2017). Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory : An Efficient Tool for Analyzing Plasmonic Excitations. <i>Journal of Chemical Theory and Computation</i>, <i>13</i>(10), 4779-4790. <a href="https://doi.org/10.1021/acs.jctc.7b00589" target="_blank">https://doi.org/10.1021/acs.jctc.7b00589</a>
dc.identifier.otherCONVID_27199951
dc.identifier.otherTUTKAID_74879
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/55715
dc.description.abstractElectronic excitations can be efficiently analyzed in terms of the underlying Kohn-Sham (KS) electron-hole transitions. While such a decomposition is readily available in the linear-response time-dependent density-functional theory (TDDFT) approaches based on the Casida equations, a comparable analysis is less commonly conducted within the real-time-propagation TDDFT (RT-TDDFT). To improve this situation, we present here an implementation of a KS decomposition tool within the local-basis-set RT-TDDFT code in the free GPAW package. Our implementation is based on postprocessing of data that is readily available during time propagation, which is important for retaining the efficiency of the underlying RT-TDDFT to large systems. After benchmarking our implementation on small benzene derivatives by explicitly reconstructing the Casida eigenvectors from RT-TDDFT, we demonstrate the performance of the method by analyzing the plasmon resonances of icosahedral silver nanoparticles up to Ag561. The method provides a clear description of the splitting of the plasmon in small nanoparticles due to individual single-electron transitions as well as the formation of a distinct d-electron-screened plasmon resonance in larger nanoparticles.en
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesJournal of Chemical Theory and Computation
dc.subject.otherplasmonic excitations
dc.subject.otherKohn-Sham decomposition
dc.titleKohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory : An Efficient Tool for Analyzing Plasmonic Excitations
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201710103975
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-10-10T09:15:20Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange4779-4790
dc.relation.issn1549-9618
dc.relation.numberinseries10
dc.relation.volume13
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by ACS. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber295602
dc.subject.ysonanohiukkaset
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysoplasmonit
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p38679
dc.relation.doi10.1021/acs.jctc.7b00589
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundinginformationWe thank the Academy of Finland for support through its Centres of Excellence Programme (2012−2017) under Projects No. 251748 and No. 284621. M.K. is grateful for Academy of Finland Postdoctoral Researcher funding under Project No. 295602. T.P.R. thanks the Vilho, Yrjö and Kalle Vaïsalä̈ Foundation of the Finnish Academy of Science and Letters and the Finnish Cultural Foundation for support. We also thank the Swedish Research Council, the Knut and Alice Wallenberg Foundation, and the Swedish Foundation for Strategic Research for support. We acknowledge computational resources provided by CSC − IT Center for Science (Finland), the Aalto Science-IT project (Aalto University School of Science), and the Swedish National Infrastructure for Computing at NSC (Linköping) and at PDC (Stockholm). Notes The authors declare no competing financial interest.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot