dc.contributor.author | Björn, Anders | |
dc.contributor.author | Björn, Jana | |
dc.contributor.author | Lehrbäck, Juha | |
dc.date.accessioned | 2017-08-09T09:35:50Z | |
dc.date.available | 2017-08-09T09:35:50Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Björn, A., Björn, J., & Lehrbäck, J. (2017). Sharp capacity estimates for annuli in weighted R^n and in metric spaces. <i>Mathematische Zeitschrift</i>, <i>286</i>(3-4), 1173- 1215. <a href="https://doi.org/10.1007/s00209-016-1797-4" target="_blank">https://doi.org/10.1007/s00209-016-1797-4</a> | |
dc.identifier.other | CONVID_26378298 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/55052 | |
dc.description.abstract | We obtain estimates for the nonlinear variational capacity of annuli in weighted Rn
and in metric spaces. We introduce four different (pointwise) exponent sets, show that they
all play fundamental roles for capacity estimates, and also demonstrate that whether an end
point of an exponent set is attained or not is important. As a consequence of our estimates we
obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion
holds in rather general metric spaces, including Carnot groups and many manifolds, but it is
just as relevant on weighted Rn. Indeed, to illustrate the sharpness of our estimates, we give
several examples of radially weighted Rn, which are based on quasiconformality of radial
stretchings in Rn. | |
dc.language.iso | eng | |
dc.publisher | Springer Berlin Heidelberg | |
dc.relation.ispartofseries | Mathematische Zeitschrift | |
dc.subject.other | annulus | |
dc.subject.other | doubling measure | |
dc.subject.other | exponent sets | |
dc.subject.other | metric space | |
dc.subject.other | Newtonian space | |
dc.subject.other | p-admissible weight | |
dc.subject.other | Poincaré inequality | |
dc.subject.other | quasiconformal mapping | |
dc.subject.other | radial weight | |
dc.subject.other | Sobolev space | |
dc.subject.other | variational capacity | |
dc.title | Sharp capacity estimates for annuli in weighted R^n and in metric spaces | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201707203338 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-07-20T12:15:14Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1173- 1215 | |
dc.relation.issn | 0025-5874 | |
dc.relation.numberinseries | 3-4 | |
dc.relation.volume | 286 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s00209-016-1797-4 | |
dc.type.okm | A1 | |