Show simple item record

dc.contributor.authorBjörn, Anders
dc.contributor.authorBjörn, Jana
dc.contributor.authorLehrbäck, Juha
dc.date.accessioned2017-08-09T09:35:50Z
dc.date.available2017-08-09T09:35:50Z
dc.date.issued2017
dc.identifier.citationBjörn, A., Björn, J., & Lehrbäck, J. (2017). Sharp capacity estimates for annuli in weighted R^n and in metric spaces. <i>Mathematische Zeitschrift</i>, <i>286</i>(3-4), 1173- 1215. <a href="https://doi.org/10.1007/s00209-016-1797-4" target="_blank">https://doi.org/10.1007/s00209-016-1797-4</a>
dc.identifier.otherCONVID_26378298
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/55052
dc.description.abstractWe obtain estimates for the nonlinear variational capacity of annuli in weighted Rn and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted Rn. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted Rn, which are based on quasiconformality of radial stretchings in Rn.
dc.language.isoeng
dc.publisherSpringer Berlin Heidelberg
dc.relation.ispartofseriesMathematische Zeitschrift
dc.subject.otherannulus
dc.subject.otherdoubling measure
dc.subject.otherexponent sets
dc.subject.othermetric space
dc.subject.otherNewtonian space
dc.subject.otherp-admissible weight
dc.subject.otherPoincaré inequality
dc.subject.otherquasiconformal mapping
dc.subject.otherradial weight
dc.subject.otherSobolev space
dc.subject.othervariational capacity
dc.titleSharp capacity estimates for annuli in weighted R^n and in metric spaces
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201707203338
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-07-20T12:15:14Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1173- 1215
dc.relation.issn0025-5874
dc.relation.numberinseries3-4
dc.relation.volume286
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00209-016-1797-4
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.
Except where otherwise noted, this item's license is described as © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.