Näytä suppeat kuvailutiedot

dc.contributor.authorVälkki, Inkeri A.
dc.contributor.authorLenk, Kerstin
dc.contributor.authorMikkonen, Jarno
dc.contributor.authorKapucu, Fikret E.
dc.contributor.authorHyttinen, Jari A. K.
dc.date.accessioned2017-06-20T05:46:21Z
dc.date.available2017-06-20T05:46:21Z
dc.date.issued2017
dc.identifier.citationVälkki, I. A., Lenk, K., Mikkonen, J., Kapucu, F. E., & Hyttinen, J. A. K. (2017). Network-Wide Adaptive Burst Detection Depicts Neuronal Activity with Improved Accuracy. <i>Frontiers in Computational Neuroscience</i>, <i>11</i>, Article 40. <a href="https://doi.org/10.3389/fncom.2017.00040" target="_blank">https://doi.org/10.3389/fncom.2017.00040</a>
dc.identifier.otherCONVID_27070501
dc.identifier.otherTUTKAID_74163
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/54579
dc.description.abstractNeuronal networks are often characterized by their spiking and bursting statistics. Previously, we introduced an adaptive burst analysis method which enhances the analysis power for neuronal networks with highly varying firing dynamics. The adaptation is based on single channels analyzing each element of a network separately. Such kind of analysis was adequate for the assessment of local behavior, where the analysis focuses on the neuronal activity in the vicinity of a single electrode. However, the assessment of the whole network may be hampered, if parts of the network are analyzed using different rules. Here, we test how using multiple channels and measurement time points affect adaptive burst detection. The main emphasis is, if network-wide adaptive burst detection can provide new insights into the assessment of network activity. Therefore, we propose a modification to the previously introduced inter-spike interval (ISI) histogram based cumulative moving average (CMA) algorithm to analyze multiple spike trains simultaneously. The network size can be freely defined, e.g., to include all the electrodes in a microelectrode array (MEA) recording. Additionally, the method can be applied on a series of measurements on the same network to pool the data for statistical analysis. Firstly, we apply both the original CMA-algorithm and our proposed network-wide CMA-algorithm on artificial spike trains to investigate how the modification changes the burst detection. Thereafter, we use the algorithms on MEA data of spontaneously active chemically manipulated in vitro rat cortical networks. Moreover, we compare the synchrony of the detected bursts introducing a new burst synchrony measure. Finally, we demonstrate how the bursting statistics can be used to classify networks by applying k-means clustering to the bursting statistics. The results show that the proposed network wide adaptive burst detection provides a method to unify the burst definition in the whole network and thus improves the assessment and classification of the neuronal activity, e.g., the effects of different pharmaceuticals. The results indicate that the novel method is adaptive enough to be usable on networks with different dynamics, and it is especially feasible when comparing the behavior of differently spiking networks, for example in developing networks.
dc.language.isoeng
dc.publisherFrontiers Research Foundation
dc.relation.ispartofseriesFrontiers in Computational Neuroscience
dc.subject.otherburst detection
dc.subject.otherneuronal networks
dc.subject.othermicroelectrode arrays
dc.subject.otherburst synchrony
dc.subject.othernetwork classification
dc.titleNetwork-Wide Adaptive Burst Detection Depicts Neuronal Activity with Improved Accuracy
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201706152914
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiaineTietojenkäsittelytiedefi
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineComputer Scienceen
dc.contributor.oppiainePsychologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-06-15T15:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1662-5188
dc.relation.numberinseries0
dc.relation.volume11
dc.type.versionpublishedVersion
dc.rights.copyright© 2017 Välkki, Lenk, Mikkonen, Kapucu and Hyttinen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
dc.rights.accesslevelopenAccessfi
dc.subject.ysolaskennallinen neurotiede
jyx.subject.urihttp://www.yso.fi/onto/yso/p23148
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3389/fncom.2017.00040
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

© 2017 Välkki, Lenk, Mikkonen, Kapucu and Hyttinen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
Ellei muuten mainita, aineiston lisenssi on © 2017 Välkki, Lenk, Mikkonen, Kapucu and Hyttinen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).