University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

Driven Bose-Hubbard model with a parametrically modulated harmonic trap

ThumbnailPublisher's PDF
View/Open
784.8Kb

Downloads:  
Show download detailsHide download details  
Mann, N., Bakhtiari, M. R., Massel, F., Pelster, A., & Thorwart, M. (2017). Driven Bose-Hubbard model with a parametrically modulated harmonic trap. Physical Review A, 95 (4), 043604. doi:10.1103/PhysRevA.95.043604
Published in
Physical Review A
Authors
Mann, N. |
Bakhtiari, M. Reza |
Massel, Francesco |
Pelster, A. |
Thorwart, M.
Date
2017
Copyright
© 2017 American Physical Society. Published in this repository with the kind permission of the publisher.

 
We investigate a one-dimensional Bose–Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross–Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particular, the effective eigenfrequency is reduced for growing interaction in the mean-field regime. For a stronger interaction, the impact of the global parametric drive is determined by the numerically exact time-evolving block decimation scheme. When the trapped bosons in the lattice are in a Mott insulating state, the absorption of energy from the driving field is suppressed due to the strongly reduced local compressibility of the quantum many-body state. In particular, we find that the width of the local Mott region shows a breathing dynamics. Finally, we observe that the global modulation also induces an effective time-independent inhomogeneous hopping strength for the atoms. ...
Publisher
American Physical Society
ISSN Search the Publication Forum
2469-9926
Keywords
quantum many-body systems quantum gas Bose–Hubbard model harmonic trap
DOI
10.1103/PhysRevA.95.043604
URI

http://urn.fi/URN:NBN:fi:jyu-201705032162

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [3606]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement
Open Science Centre