Predator-induced plasticity on the life-history and antipredator defenses of the aposematic wood tiger moth larva
Tekijät
Päivämäärä
2017Pääsyrajoitukset
Aineistoon pääsyä on rajoitettu tekijänoikeussyistä. Aineisto on luettavissa Jyväskylän yliopiston kirjaston arkistotyöasemalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat.
Defense mechanisms in organisms evolve as a response of predator-prey interactions,
reducing prey mortality. Flexibility in antipredator strategies due to heterogeneous
environments can be explained by phenotypic plasticity. This plasticity can be important
for aposematic organisms where variation in the warning signal within a population is considered puzzling. In aposematism, monomorphism is expected because the predator
better learns to avoid the unprofitable prey associated with a conspicuous signal and tends
to generalize the negative experience to nearby stimulus. Thus, selection should favour the
most common and conspicuous warning signal leading to positive frequency-dependent
survival selection. I examined predator-induced plasticity on antipredator defenses of the
aposematic wood tiger moth larva, Arctia plantaginis. The main defense of the larva is the
continuous warning signal comprising a hairy black body and an orange patch on the
dorsal part. A large orange patch has been related with a more efficient antipredator
function, while a small patch with efficiency in thermoregulation and immunity response.
Given this, I hypothesized that predation would induce a plastic response in warning signal
size. Due to the potential importance or interaction of other antipredator defenses such as
body size, development time and behaviour I also studied their plastic response to
predation. I expected a positive plastic response from the larvae under pr edation risk.
Based on general theory and past results in the system I also predicted that under predation
larvae would develop a smaller body size, a faster development time with less instars and
slower escape behaviour. I reared larvae from 20 families in a split-design experiment.
Individuals from each family were evenly split and reared in two environments. In one, the
larvae were exposed to a simulated bird attack, whereas in the other, the larvae were left to
develop in normal conditions. Overall I found predation induced a significant plastic response in the orange warning signal size, body size and number of moulting events. It also affected overall survival. However, predation did not have a significant effect on the larval development time. The escape behaviour was also plastic and there was a significant interaction between families and the treatment, suggesting that not all organisms responded
similarly to predation. I also find a significant family effect, meaning that families in the study expressed differences in the mean value for a specific trait. In conclusion, the traits showed to differ in the plastic responsiveness to predation. This provides an insight about the selection pressures that constraint the plastic response. For instance, the development time showed to be a trait less sensitive, suggesting that for organisms that are seasonally constrained, time to metamorphosis is more critical than the risk of predation.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29740]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Multimodal Aposematic Defenses Through the Predation Sequence
Winters, Anne E.; Lommi, Jenna; Kirvesoja, Jimi; Nokelainen, Ossi; Mappes, Johanna (Frontiers Media SA, 2021)Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help ... -
A synthesis of deimatic behaviour
Drinkwater, Eleanor; Allen, William L.; Endler, John A.; Hanlon, Roger T.; Holmes, Grace; Homziak, Nicholas T.; Kang, Changku; Leavell, Brian C.; Lehtonen, Jussi; Loeffler‐Henry, Karl; Ratcliffe, John M.; Rowe, Candy; Ruxton, Graeme D.; Sherratt, Tom N.; Skelhorn, John; Skojec, Chelsea; Smart, Hannah R.; White, Thomas E.; Yack, Jayne E.; Young, Catherine M.; Umbers, Kate D. L. (Wiley, 2022)Deimatic behaviours, also referred to as startle behaviours, are used against predators and rivals. Although many are spectacular, their proximate and ultimate causes remain unclear. In this review we aim to synthesise ... -
Social information use by predators : expanding the information ecology of prey defences
Hämäläinen, Liisa; M. Rowland, Hannah; Mappes, Johanna; Thorogood, Rose (Wiley-Blackwell, 2022)Social information use is well documented across the animal kingdom, but how it influences ecological and evolutionary processes is only just beginning to be investigated. Here we evaluate how social transmission may ... -
The price of safety : food deprivation in early life influences the efficacy of chemical defence in an aposematic moth
Burdfield-Steel, Emily; Brain, Morgan; Rojas Zuluaga, Bibiana; Mappes, Johanna (Wiley-Blackwell Publishing Ltd., 2019)Aposematism is the combination of a primary signal with a secondary defence that predators must learn to associate with one another. However, variation in the level of defence, both within and between species, is very ... -
Predator-Induced Plasticity on Warning Signal and Larval Life-History Traits of the Aposematic Wood Tiger Moth, Arctia plantaginis
Abondano Almeida, Diana; Mappes, Johanna; Gordon, Swanne (Frontiers Media SA, 2021)Predator-induced plasticity in life-history and antipredator traits during the larval period has been extensively studied in organisms with complex life-histories. However, it is unclear whether different levels of predation ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.