Social information use by predators : expanding the information ecology of prey defences
Hämäläinen, L., M. Rowland, H., Mappes, J., & Thorogood, R. (2022). Social information use by predators : expanding the information ecology of prey defences. Oikos, 2022(10), Article e08743. https://doi.org/10.1111/oik.08743
Julkaistu sarjassa
OikosPäivämäärä
2022Oppiaine
Evoluutiotutkimus (huippuyksikkö)Ekologia ja evoluutiobiologiaCentre of Excellence in Evolutionary ResearchEcology and Evolutionary BiologyTekijänoikeudet
© 2021 the Authors
Social information use is well documented across the animal kingdom, but how it influences ecological and evolutionary processes is only just beginning to be investigated. Here we evaluate how social transmission may influence species interactions and potentially change or create novel selection pressures by focusing on predator–prey interactions, one of the best studied examples of species coevolution. There is extensive research into how prey can use social information to avoid predators, but little synthesis of how social transmission among predators can influence the outcome of different stages of predation. Here we review evidence that predators use social information during 1) encounter, 2) detection, 3) identification, 4) approach, 5) subjugation and 6) consumption. We use this predation sequence framework to evaluate the implications of social information use on current theoretical predictions about predator–prey dynamics, and find that social transmission has the potential to alter selection pressures for prey defences at each predation stage. This suggests that considering social interactions can help answer open questions about species coevolution, and also predict how populations and communities respond to rapid human-induced changes in the environment.
...
Julkaisija
Wiley-BlackwellISSN Hae Julkaisufoorumista
0030-1299Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/102419059
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiaprofessorin tutkimuskulut, SALisätietoja rahoituksesta
LH was supported by Jenny and Antti Wihuri Foundation. HMR is supported by the Max Planck Society. JM was supported by the Academy of Finland (no. 320438) and the University of Jyväskylä. RT was supported by a start-up grant from the Helsinki Institute of Life Science (HiLIFE), University of Helsinki.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Social learning within and across predator species reduces attacks on novel aposematic prey
Hämäläinen, Liisa; Mappes, Johanna; Rowland, Hannah M.; Teichmann, Marianne; Thorogood, Rose (Wiley-Blackwell, 2020)1. To make adaptive foraging decisions, predators need to gather information about the profitability of prey. As well as learning from prey encounters, recent studies show that predators can learn about prey defences by ... -
Predator-induced plasticity on the life-history and antipredator defenses of the aposematic wood tiger moth larva
Abondano Almeida, Diana (2017)Defense mechanisms in organisms evolve as a response of predator-prey interactions, reducing prey mortality. Flexibility in antipredator strategies due to heterogeneous environments can be explained by phenotypic ... -
A synthesis of deimatic behaviour
Drinkwater, Eleanor; Allen, William L.; Endler, John A.; Hanlon, Roger T.; Holmes, Grace; Homziak, Nicholas T.; Kang, Changku; Leavell, Brian C.; Lehtonen, Jussi; Loeffler‐Henry, Karl; Ratcliffe, John M.; Rowe, Candy; Ruxton, Graeme D.; Sherratt, Tom N.; Skelhorn, John; Skojec, Chelsea; Smart, Hannah R.; White, Thomas E.; Yack, Jayne E.; Young, Catherine M.; Umbers, Kate D. L. (Wiley, 2022)Deimatic behaviours, also referred to as startle behaviours, are used against predators and rivals. Although many are spectacular, their proximate and ultimate causes remain unclear. In this review we aim to synthesise ... -
Antipredator strategies of pupae : how to avoid predation in an immobile life stage?
Lindstedt, Carita; Murphy, Liam; Mappes, Johanna (The Royal Society Publishing, 2019)Antipredator strategies of the pupal stage in insects have received little attention in comparison to larval or adult stages. This is despite the fact that predation risk can be high during the pupal stage, making it a ... -
The signal detection problem of aposematic prey revisited : integrating prior social and personal experience
Hämäläinen, Liisa; Thorogood, Rose (The Royal Society Publishing, 2020)Ever since Alfred R. Wallace suggested brightly coloured, toxic insects warn predators about their unprofitability, evolutionary biologists have searched for an explanation of how these aposematic prey evolve and are ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.