Show simple item record

dc.contributor.advisorIhalainen Janne
dc.contributor.advisorLehtivuori Heli
dc.contributor.authorKurkinen, Sami
dc.date.accessioned2017-03-29T16:23:04Z
dc.date.available2017-03-29T16:23:04Z
dc.date.issued2017
dc.identifier.otheroai:jykdok.linneanet.fi:1690707
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/53397
dc.description.abstractFytokromit ovat bakteereissa, levissä ja kasveissa esiintyviä valoaktiivisia proteiineja, jotka aistivat punaista ja kaukopunaista valoa. Ne toimivat valoreseptoreina solusignaloinnissa. Puna- sekä kaukopuna-alueen valo muuttaa fytokromeja edestakaisin valottuneen tilan ja lepotilan välillä. Valoaktivaatiomekanismi lepotilalta valottuneelle tilalle on monivaiheinen tapahtuma, joka alkaa kovalenttisesti sitoutuneen kromoforin isomerisaatiolla. Bakteerifytokromeissa kromofori on useimmiten biliverdiini. Fytokromiproteiinit tarjoavat mahdollisuuksia kudosten kuvantamiseen, vaikkakin tyypillisesti niiden fluoresenssin kvanttisaanto on heikko. Kvanttisaantoa voidaan kuitenkin parantaa heikentämällä valoaktivaatioreittejä, jotka ajavat virittynyttä proteiinia kohti valottunutta tilaa. Näin suositaan niitä kanavia, jotka johtavat viritystilan vaimenemiseen tai proteiinin fluoresenssiin. Viritystilan ominaisuudet tulee tuntea, jotta fytokromien fluoresoivia ominaisuuksia voitaisiin parantaa. Tässä työssä tutkittiin Deinococcus radioduransin fytokromin kromoforia sitovan osan valoaktivaatiomekanismia. Työssä vertailtiin poolisten ja poolittomien subtituutioiden vaikutusta biliverdiinin läheisyydessä olevaan konservoituneeseen aminohappoon H260. H260:n ja biliverdiinin välillä olevaa vetysidosverkostoa häirittiin seriini-, alaniini- ja leusiinimutaatioilla. Kaikki variantit tuottuivat ja sitoivat biliverdiiniä kovalenttisesti. Niiden valoaktivaatiota tutkittiin steady-state ja aikaerotteisen spektroskopian menetelmin. Lepotilassa H260A ja H260S variantin absorptiospektri muistutti villityypin absorptiospektriä. H260L variantin absorptiospektri poikkesi villityypin absorptiospektristä merkittävästi, mikä viittaa poolittoman leusiinin muuttavan hyvin merkittävästi proteiinin sitoutumistaskua. Työssä tutkittiin myös kaikkien varianttien kykyä siirtyä lepotilasta aktiiviseen tilaan. Punaisella valolla valottamisen jälkeen kaikkien varianttien reaktiotuote poikkesi villityypin vastaavasta, eikä yksikään kyennyt palautumaan takaisin lepotilaan kuten villityyppi. Hiljattain on ehdotettu, että fytokromeissa isomerisaation lisäksi varauksensiirtotila (elektroninsiirto yhdistettynä protoninsiirtoon) on tärkeässä roolissa biliverdiinin virittyneen tilan dynamiikassa. Tämä varauksensiirtotila voidaan nähdä aikaerotteisessa spektroskopiassa positiivisena signaalina lähi-infrapuna-alueella. Näiden mittausten mukaan H260 on mukana varauksensiirtotilan muodostuksessa, mikä osoitettiin nyt ensimmäisen kerran. Tämän lisäksi H260A ja H260S variantit eivät saavuttaneet ensimmäistä suhteellisen vakaata valoaktivaatioreitin tuotetta. Näistä tuloksista huolimatta fluoresenssin kvanttisaanto ei yllättäen kasvanut yhdelläkään variantilla. Tämä osoittaa, että fytokromien viritystilan vaimenemisreitit ovat oletettua monimutkaisempia ja H260 ei vaikuta sen fluoresoiviin ominaisuuksiin. Tässä työssä tehdyt havainnot auttavat uusien fluoresoivien merkkiaineiden kehityksessä ja antavat uutta tietoa H260:n merkityksestä fytokromin valoktivaatioprosessissa.fi
dc.description.abstractPhytochromes are red and far-red light sensitive proteins found in bacteria, algae and plants. They work as photoreceptors in cell signaling. Red and far-red light convert phytochromes back and forth between the active and resting states. The photoactivation mechanism from the resting state to the active state contains several steps but is initiated by the isomerization of a covalently bound chromophore. In bacterial phytochromes, the chromophore is usually biliverdin. The near-infrared fluorescence properties of phytochromes offer potential to tissue imaging, although, typically the fluorescence quantum yield of phytochromes is poor. This can be increased by diminishing the photoactivation pathway that leads the excited protein to the stable photoproduct. In this way, pathways that lead to de-excitation and protein fluorescence are favored. In order to improve the fluorescence properties, the excited state properties need to be known. In this study, the photoactivation mechanism of a chromophore-binding domain from Deinococcus radiodurans phytochrome was explored. The effects of polar and nonpolar substitutions of the residue H260, which is a conserved amino acid in close proximity to the biliverdin chromophore, were compared. Ser, Ala and Leu mutations were made to disturb the hydrogen bond network between H260 and biliverdin vicinity. All these H260 variants were produced and they all bind covalently biliverdin. The photoactivation of the variants was studied by steady-state and time-resolved spectroscopies. The absorption spectra of the H260A and H260S variants resemble the spectrum of the wild type in the resting state. The absorption spectrum of the H260L variant differs from the wild type spectrum, which suggests that a nonpolar Leu residue changes the binding pocket considerably. The photoconversion potential for all H260 variants was also tested. After illumination with red light, the photoproduct of all H260 variants differed from the wild type and none of them was able to revert to the resting state with far-red illumination as the wild type does. Recently, it has been suggested that in addition to isomerization, a charge-transfer state (electron transfer coupled to proton transfer) of biliverdin plays an important role in the excited state dynamics of biliverdin in phytochromes. This shows up as a positive transient signal at the near-infrared spectral region. According to the time-resolved absorption measurements, it was shown for the first time that H260 is one of the central amino acids needed in the formation of the charge-transfer state. In addition, H260A and H260S variants did not reach the first relatively stable photoproduct in the photoactivation pathway. Surprisingly, despite these observations, the fluorescence quantum yields of the variants were not increased. This indicates that the de-excitation pathways of phytochromes are more complicated than excepted and H260 does not affect the fluorescence properties. Findings in this study will help in developing new fluorescent markers and give new information about the role of H260 in the photoactivation process of a phytochrome.en
dc.format.extent1 verkkoaineisto (46 sivua)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rightsThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.subject.otherphytochrome
dc.subject.otherDeinococcus radiodurans
dc.titleThe importance of biliverdin-pyrrole water-histidine interaction in the photoactivation of Deinococcus radiodurans phytochrome
dc.identifier.urnURN:NBN:fi:jyu-201703291816
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineCell and molecular biologyen
dc.date.updated2017-03-29T16:23:04Z
dc.rights.accesslevelrestrictedAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4013
dc.subject.ysospektroskopia
dc.format.contentfulltext
dc.rights.accessrightsAineistoon pääsyä on rajoitettu tekijänoikeussyistä. Aineisto on luettavissa Jyväskylän yliopiston kirjaston arkistotyöasemalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat.fi
dc.rights.accessrightsThis material has a restricted access due to copyright reasons. It can be read at the workstation at Jyväskylä University Library reserved for the use of archival materials: https://kirjasto.jyu.fi/en/workspaces/facilities.en
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record