Adsorption and Activation of Water on Cuboctahedral Rhodium and Platinum Nanoparticles
Bazhenov, A., Lefferts, L., & Honkala, K. (2017). Adsorption and Activation of Water on Cuboctahedral Rhodium and Platinum Nanoparticles. Journal of Physical Chemistry C, 121(8), 4324-4331. https://doi.org/10.1021/acs.jpcc.6b11953
Julkaistu sarjassa
Journal of Physical Chemistry CPäivämäärä
2017Tekijänoikeudet
© 2017 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by American Chemical Society. Published in this repository with the kind permission of the publisher.
Rh and Pt are widely used as the components in heterogeneous catalysts for multiple industrial applications. Because the metals are typically in the form of nanoparticles in real catalysts, it is important to carefully select models for the computational prediction of the catalytic properties. Here we report a first-principles study on the water activation, an important step in numerous catalytic reactions, using the finite-size Rh and Pt nanoparticle models and compare them to the extended surface models. We show that regardless of the model, adsorption and activation of water is practically identical for both metals, whereas the dissociation is energetically more favorable on Rh. The experimentally observed difference thus must be attributed to stronger interaction of dissociated water with the metal surfaces or to the presence of the oxide support. Through a selection of descriptors, we demonstrate that the extended surface models cannot fully represent the atomic and electronic structures of the small nanoparticles of <2 nm in size.
...
Julkaisija
American Chemical SocietyISSN Hae Julkaisufoorumista
1932-7447Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26542807
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
We acknowledge the financial support from the Academy of Finland (grant 277222). Electronic structure calculations were made possible through the use of computational resources provided by the CSC – IT Center of Science in Espoo, Finland (http://www.csc.fi/).Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Influence of a Cu–zirconia interface structure on CO2 adsorption and activation
Gell, Lars; Lempelto, Aku; Kiljunen, Toni; Honkala, Karoliina (American Institute of Physics, 2021)CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the ... -
Catalytic Effect of Transition Metals (Copper, Iron, and Nickel) on the Foaming and Properties of Sugar-Based Carbon Foams
Varila, Toni; Romar, Henrik; Lassi, Ulla (Springer, 2019)Recently, bio-based carbon foams have gained much interest in many chemical industry felds because of their unique structure and properties. This study provides new information on the efects of catalytic metals (iron, ... -
C,N-chelated diaminocarbene platinum(II) complexes derived from 3,4-diaryl-1H-pyrrol-2,5-diimines and cis-dichlorobis(isonitrile)platinum(II): Synthesis, cytotoxicity, and catalytic activity in hydrosilylation reactions
Afanasenko, Anastasiia M.; Chulkova, Tatiana G.; Boyarskaya, Irina A.; Islamova, Regina M.; Legin, Anton A.; Keppler, Bernhard K.; Selivanov, Stanislav I.; Vereshchagin, Anatoly N.; Elinson, Michail N.; Haukka, Matti (Elsevier BV, 2020)The reaction of 3,4-diaryl-1H-pyrrol-2,5-diimines with cis-dichlorobis(isonitrile)platinum(II) affords the C,N-chelated diaminocarbene platinum(II) complexes, which have been fully characterized including molecular ... -
ReO as a Brønsted acidic modifier in glycerol hydrodeoxygenation : Computational insight into the balance between acid and metal catalysis
Korpelin, Ville; Sahoo, Gokarneswar; Ikonen, Rasmus; Honkala, Karoliina (Elsevier BV, 2023)A computational study for the competitive conversion of glycerol to 1,2-propanediol and 1,3-propanediol is presented, considering a two-step sequence of dehydration followed by hydrogenation. The elementary steps for ... -
A Self-Consistent Charge Density-Functional Tight-Binding Parameterization for Pt-Ru Alloys
Shi, Hongbo; Koskinen, Pekka; Ramasubramaniam, Ashwin (American Chemical Society, 2017)We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.