## Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives

dc.contributor.author | Kostensalo, Joel | |

dc.contributor.author | Suhonen, Jouni | |

dc.date.accessioned | 2017-02-07T07:29:29Z | |

dc.date.available | 2017-02-07T07:29:29Z | |

dc.date.issued | 2017 | |

dc.identifier.citation | Kostensalo, J., & Suhonen, J. (2017). Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives. <i>Physical Review C</i>, <i>95</i>(1), Article 014322. <a href="https://doi.org/10.1103/PhysRevC.95.014322" target="_blank">https://doi.org/10.1103/PhysRevC.95.014322</a> | |

dc.identifier.other | CONVID_26528680 | |

dc.identifier.other | TUTKAID_72878 | |

dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/52972 | |

dc.description.abstract | Half-lives for 148 potentially measurable 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-forbidden unique beta transitions are predicted. To achieve this, the ratio of the nuclear matrix elements (NMEs), calculated by the proton-neutron quasiparticle random-phase approximation (pnQRPA), MpnQRPA, and a two-quasiparticle (two-qp) model, Mqp, is studied and compared with earlier calculations for the allowed Gamow-Teller (GT) 1+ and first-forbidden spin-dipole (SD) 2− transitions. The present calculations are done using realistic single-particle model spaces and G-matrix based microscopic two-body interactions. In terms of the ratio k = MpnQRPA/Mqp the studied decays fall into two groups: for GROUP 1, which consists of transitions involving non-magic nuclei, the ratio turns out to be k = 0.29 ± 0.15. For GROUP 2, consisting of transitions involving semimagic nuclei, the ratio is 0.5–0.8 for half of the decays and less than 5 × 10−3 for the other half. The magnitudes of the NMEs for several nuclei of GROUP 2 depend sensitively on the size of the used single-particle space and the energies of few key single-particle orbitals used in the pnQRPA calculation, while no such dependence is found for the transitions involving nuclei of GROUP 1. Comparing the NME ratios k of GROUP 1 with those of the earlier GT and SD calculations, where also experimental data are available, the expected “experimental” half-lives for the decays between the 0+ ground state of the even-even reference nuclei and the J π = 3+,4−,5+,6−,7+,8− states of the neighboring odd-odd nuclei are derived for possible experimental verification. The present results could also shed light to the magnitudes of the NMEs corresponding to the high-forbidden unique 0+ → J π = 3+,4−,5+,6−,7+,8− virtual transitions taking part in the neutrinoless double beta decays. | |

dc.language.iso | eng | |

dc.publisher | American Physical Society | |

dc.relation.ispartofseries | Physical Review C | |

dc.subject.other | beta decay | |

dc.subject.other | forbidden beta decay | |

dc.subject.other | nuclear matrix elements | |

dc.subject.other | proton-neutron quasiparticle random-phase approximation | |

dc.title | Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives | |

dc.type | article | |

dc.identifier.urn | URN:NBN:fi:jyu-201702031356 | |

dc.contributor.laitos | Fysiikan laitos | fi |

dc.contributor.laitos | Department of Physics | en |

dc.type.uri | http://purl.org/eprint/type/JournalArticle | |

dc.date.updated | 2017-02-03T16:15:08Z | |

dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |

dc.description.reviewstatus | peerReviewed | |

dc.relation.issn | 2469-9985 | |

dc.relation.numberinseries | 1 | |

dc.relation.volume | 95 | |

dc.type.version | publishedVersion | |

dc.rights.copyright | © 2017 American Physical Society. Published in this repository with the kind permission of the publisher. | |

dc.rights.accesslevel | openAccess | fi |

dc.relation.doi | 10.1103/PhysRevC.95.014322 | |

dc.type.okm | A1 |