Neuroverkkojen regularisointimenetelmät
Ylisovitus on yleinen ongelma ohjatussa oppimisessa, missä malli oppii suoriutumaan hyvin oppimisessa käytetyllä datalla, mutta alisuoriutuu oppimisen aikana näkemättömällä datalla. Regularisointimenetelmillä pyritään vähentämään ylisovitusta ohjatun oppimisen sovellutuksissa. Tämä tutkielma keskittyy tutkimaan ja kartoittamaan erilaisia neuroverkoissa käytettyjä regularisointimenetelmiä. Overfitting is a common problem in supervised learning, where a model learns to perform well with the data used to train it, but underperforms with data it has not seen during the training. Regularization methods are used to reduce overfitting in applications of supervised learning. This paper focuses on researching and mapping various regularization methods used in neural networks.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Kandidaatintutkielmat [5362]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Kotiloiden luokittelu - neuroverkkojen ja multinomiaalisen logistisen regression sovellus
Lintilä, Atte (2014) -
Konvolutionaalisten neuroverkkojen hyödyntäminen automatisoitujen ajoneuvojen kehittämisessä
Hiekkavirta, Jenna (2021)Tekoäly on tällä hetkellä ja tulevaisuudessa merkittävä teknologia, jota pystytään hyödyntämään autonomisessa ajamisessa eri teknologioiden avulla. Tässä kandidaatin tutkielmassa selvitetään sitä, miten konvolutionaalisia ... -
Neuroverkkojen matemaattiset perusteet
Tuominen, Heli (Jyväskylän yliopisto, 2019) -
Keinotekoisten neuroverkkojen hyödyntäminen automaattisessa lintujen tunnistamisessa äänen perusteella
Sintonen, Lauri (2018)Tässä tutkielmassa esitellään keinotekoisten neuroverkkojen hyödyntämistä automaattisessa lintujen tunnistamisessa äänen perusteella. Keskeisenä motiivina ovat sekä neuroverkkoihin tutustuminen että lintujen automaattisen ... -
Keinotekoisten neuroverkkojen käyttö kombinatoristen optimointiongelmien ratkaisemisessa
Mylläri, Tapio (2018)Keinotekoisia neuroverkkoja voidaan käyttää monenlaisten haastavien ongelmien ratkaisemiseen. Tällaisia ongelmia ovat esimerkiksi kuvantunnistus, äänentunnistus ja tekoälysovellukset monimutkaisempiin peleihin. Tällaisten ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.