Show simple item record

dc.contributor.advisorHämäläinen, Timo
dc.contributor.authorLateef, Asim
dc.date.accessioned2016-12-21T19:48:37Z
dc.date.available2016-12-21T19:48:37Z
dc.date.issued2016
dc.identifier.otheroai:jykdok.linneanet.fi:1645205
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/52511
dc.description.abstractWireless Sensor Network can be defined as a network of integrated sensors responsible for environmental sensing, data processing and communication with other sensors and the base station while consuming low power. Today, WSNs are being used in almost every part of life. The cost effective nature of WSNs is beneficial for environmental monitoring, production facilities and security monitoring. At the same time WSNs are vulnerable to security breaches, attacks and information leakage. Anomaly detection techniques are used to detect such activities over the network that do not conform to the normal behavior of the network communication. Supervised Machine learning approach is one way to detect anomalies where a normal model is developed with known responses called labels and this model is tested against new data sets. We experimented Supervised Machine Learning approach for the labelled sensor data set of Humidity and Temperature and the results show that KNN (K Nearest Neighbor) proves to be the best anomaly detection algorithm for this data set.en
dc.format.extent1 verkkoaineisto (78 sivua)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsIn Copyrighten
dc.subject.otherWireless sensor networks
dc.subject.otheranomaly detection
dc.subject.othersupervised machine learning
dc.titleAnomaly detection in wireless sensor networks
dc.typemaster thesis
dc.identifier.urnURN:NBN:fi:jyu-201612215230
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.date.updated2016-12-21T19:48:38Z
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.rights.accesslevelopenAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi602
dc.subject.ysokoneoppiminen
dc.subject.ysosensoriverkot
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright