dc.contributor.author | Kokkonen, Tero | |
dc.date.accessioned | 2016-11-30T07:45:45Z | |
dc.date.available | 2016-11-30T07:45:45Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-951-39-6832-8 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1643746 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/52075 | |
dc.description.abstract | Almost all the organisations and even individuals rely on complex structures of
data networks and networked computer systems. That complex data ensemble,
the cyber domain, provides great opportunities, but at the same time it offers
many possible attack vectors that can be abused for cyber vandalism, cyber crime,
cyber espionage or cyber terrorism. Those threats produce requirements for cyber security situational awareness and intrusion detection capability. This dissertation concentrates on research and development of anomaly-based network
intrusion detection system as a sensor for a situational awareness system. In this
dissertation, several models of intrusion detection systems are developed using
clustering-based data-mining algorithms for creating a model of normal user behaviour and finding similarities and dissimilarities compared to that model. That
information can be used as a sensor feed in a situational awareness system in cyber security. A model of cyber security situational awareness system with multisensor fusion capability is presented in this thesis. Also a model for exchanging
the information of cyber security situational awareness is generated. The constructed intrusion detection system schemes are tested with different scenarios
even in online mode with real user data. | |
dc.format.extent | 1 verkkoaineisto (81 sivua, 99 sivua useina numerointijaksoina) | |
dc.language.iso | eng | |
dc.publisher | University of Jyväskylä | |
dc.relation.ispartofseries | Jyväskylä studies in computing | |
dc.rights | In Copyright | |
dc.subject.other | tunkeilijan havaitsemisjärjestelmät | |
dc.subject.other | anomaly detection | |
dc.subject.other | clustering | |
dc.subject.other | cyber security | |
dc.subject.other | early warning | |
dc.subject.other | information sharing | |
dc.subject.other | intrusion detection system | |
dc.subject.other | network security | |
dc.subject.other | situational awareness | |
dc.title | Anomaly-based online intrusion detection system as a sensor for cyber security situational awareness system | |
dc.type | Diss. | |
dc.identifier.urn | URN:ISBN:978-951-39-6832-8 | |
dc.type.dcmitype | Text | en |
dc.type.ontasot | Väitöskirja | fi |
dc.type.ontasot | Doctoral dissertation | en |
dc.contributor.tiedekunta | Faculty of Information Technology | en |
dc.contributor.tiedekunta | Informaatioteknologian tiedekunta | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.relation.issn | 1456-5390 | |
dc.relation.numberinseries | 251 | |
dc.rights.accesslevel | openAccess | |
dc.subject.yso | kyberturvallisuus | |
dc.subject.yso | tietoverkot | |
dc.subject.yso | pääsynvalvonta | |
dc.subject.yso | valvontajärjestelmät | |
dc.subject.yso | tilannekuva | |
dc.subject.yso | tiedonlouhinta | |
dc.subject.yso | klusterianalyysi | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |