Show simple item record

dc.contributor.authorOnninen, Jani
dc.contributor.authorTengvall, Ville
dc.date.accessioned2016-11-15T05:51:02Z
dc.date.available2016-11-15T05:51:02Z
dc.date.issued2016
dc.identifier.citationOnninen, J., & Tengvall, V. (2016). Mappings of L p -integrable distortion: regularity of the inverse. <em>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</em>, 146 (3), 647-663. <a href="https://doi.org/10.1017/S0308210515000530">doi:10.1017/S0308210515000530</a>
dc.identifier.otherTUTKAID_70529
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/51878
dc.description.abstractLet X be an open set in R n and suppose that f : X → R n is a Sobolev homeomorphism. We study the regularity of f −1 under the L p -integrability assumption on the distortion function Kf . First, if X is the unit ball and p > n−1, then the optimal local modulus of continuity of f −1 is attained by a radially symmetric mapping. We show that this is not the case when p 6 n − 1 and n > 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for |Df −1 | in terms of the L p -integrability assumptions of Kf .
dc.language.isoeng
dc.publisherThe RSE Scotland Foundation
dc.relation.ispartofseriesProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.subject.othermappings of finite distortion
dc.subject.otherregularity of the inverse
dc.subject.othermodulus of continuity
dc.subject.otherhigher integrability
dc.subject.otherSobolev homeomorphism
dc.titleMappings of L p -integrable distortion: regularity of the inverse
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201611144618
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikka
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-11-14T13:15:04Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange647-663
dc.relation.issn0308-2105
dc.relation.volume146
dc.type.versionacceptedVersion
dc.rights.copyright© Royal Society of Edinburgh 2016. This is a final draft version of an article whose final and definitive form has been published by Royal Society of Edinburgh. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1017/S0308210515000530


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record