Show simple item record

dc.contributor.authorLappi, Tuomas
dc.contributor.authorRamnath, Andrecia
dc.contributor.authorRummukainen, K.
dc.contributor.authorWeigert, H.
dc.date.accessioned2016-10-13T05:40:04Z
dc.date.available2016-10-13T05:40:04Z
dc.date.issued2016
dc.identifier.citationLappi, T., Ramnath, A., Rummukainen, K., & Weigert, H. (2016). JIMWLK evolution of the odderon. <i>Physical Review D</i>, <i>94</i>(5), Article 054014. <a href="https://doi.org/10.1103/PhysRevD.94.054014" target="_blank">https://doi.org/10.1103/PhysRevD.94.054014</a>
dc.identifier.otherCONVID_26258707
dc.identifier.otherTUTKAID_71415
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/51606
dc.description.abstractWe study the effects of a parity-odd “odderon” correlation in Jalilian-Marian–Iancu–McLerran– Weigert–Leonidov–Kovner renormalization group evolution at high energy. Firstly we show that in the eikonal picture where the scattering is described by Wilson lines, one obtains a strict mathematical upper limit for the magnitude of the odderon amplitude compared to the parity-even Pomeron one. This limit increases with Nc, approaching infinity in the infinite Nc limit. We use a systematic extension of the Gaussian approximation including both two- and three-point correlations which enables us to close the system of equations even at finite Nc. In the large-Nc limit we recover an evolution equation derived earlier. By solving this equation numerically we confirm that the odderon amplitude decreases faster in the nonlinear case than in the linear Balitsky-Fadin-Kuraev-Lipatov limit. We also point out that, in the threepoint truncation at finite Nc, the presence of an odderon component introduces azimuthal angular correlations ∼ cosðnφÞ at all n in the target color field. These correlations could potentially have an effect on future studies of multiparticle angular correlations.
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review D
dc.subject.otherquantum chromodynamics
dc.subject.otherWilson lines
dc.subject.otherevolution equations
dc.subject.otherJIMWLK
dc.subject.otherodderon
dc.titleJIMWLK evolution of the odderon
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201610104314
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-10-10T12:15:08Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1550-7998
dc.relation.numberinseries5
dc.relation.volume94
dc.type.versionpublishedVersion
dc.rights.copyright© 2016 American Physical Society. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber267321
dc.relation.doi10.1103/PhysRevD.94.054014
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundinginformationWe are grateful to H. Mäntysaari for help with BK numerics. T. L. is supported by the Academy of Finland, Projects No. 267321 and No. 273464. A. R. has been supported by a scholarship from the Center for International Mobility, Finland. K. R. is supported by the Academy of Finland Project No. 267286. H. W. is supported by the National Research Foundation of South Africa (NRF) under CPRR Grant No. 90509.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record