Näytä suppeat kuvailutiedot

dc.contributor.authorDudkowski, Dawid
dc.contributor.authorJafari, Sajad
dc.contributor.authorKapitaniak, Tomasz
dc.contributor.authorKuznetsov, Nikolay
dc.contributor.authorLeonov, Gennady A.
dc.contributor.authorPrasad, Awadhesh
dc.date.accessioned2016-07-07T09:49:54Z
dc.date.available2020-05-26T21:35:09Z
dc.date.issued2016
dc.identifier.citationDudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N., Leonov, G. A., & Prasad, A. (2016). Hidden attractors in dynamical systems. <i>Physics Reports</i>, <i>637</i>, 1-50. <a href="https://doi.org/10.1016/j.physrep.2016.05.002" target="_blank">https://doi.org/10.1016/j.physrep.2016.05.002</a>
dc.identifier.otherCONVID_25731938
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/50751
dc.description.abstractComplex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical–numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
dc.language.isoeng
dc.publisherElsevier BV * North-Holland
dc.relation.ispartofseriesPhysics Reports
dc.subject.othernonlinear dynamics
dc.subject.othermultistability
dc.subject.otherbasins of attraction
dc.titleHidden attractors in dynamical systems
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-201607013450
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-07-01T12:15:43Z
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-50
dc.relation.issn0370-1573
dc.relation.numberinseries0
dc.relation.volume637
dc.type.versionacceptedVersion
dc.rights.copyright© 2016 Elsevier B.V. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoattraktorit
jyx.subject.urihttp://www.yso.fi/onto/yso/p38900
dc.relation.doi10.1016/j.physrep.2016.05.002
dc.type.okmA2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot