Näytä suppeat kuvailutiedot

dc.contributor.authorHonkavaara, Eija
dc.contributor.authorEskelinen, Matti
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorSaari, Heikki
dc.contributor.authorOjanen, Harri
dc.contributor.authorMannila, Rami
dc.contributor.authorHolmlund, Christer
dc.contributor.authorHakala, Teemu
dc.contributor.authorLitkey, Paula
dc.contributor.authorRosnell, Tomi
dc.contributor.authorViljanen, Niko
dc.contributor.authorPulkkanen, Merja
dc.date.accessioned2016-06-08T08:58:35Z
dc.date.available2016-06-08T08:58:35Z
dc.date.issued2016
dc.identifier.citationHonkavaara, E., Eskelinen, M., Pölönen, I., Saari, H., Ojanen, H., Mannila, R., Holmlund, C., Hakala, T., Litkey, P., Rosnell, T., Viljanen, N., & Pulkkanen, M. (2016). Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). <i>IEEE Transactions on Geoscience and Remote Sensing</i>, <i>54</i>(9). <a href="https://doi.org/10.1109/TGRS.2016.2565471" target="_blank">https://doi.org/10.1109/TGRS.2016.2565471</a>
dc.identifier.otherCONVID_26039901
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/50173
dc.description.abstractMiniaturized hyperspectral imaging sensors are becoming available to small unmanned airborne vehicle (UAV) platforms. Imaging concepts based on frame format offer an attractive alternative to conventional hyperspectral pushbroom scanners because they enable enhanced processing and interpretation potential by allowing for acquisition of the 3-D geometry of the object and multiple object views together with the hyperspectral reflectance signatures. The objective of this investigation was to study the performance of novel visible and near-infrared (VNIR) and short-wave infrared (SWIR) hyperspectral frame cameras based on a tunable Fabry–Pérot interferometer (FPI) in measuring a 3-D digital surface model and the surface moisture of a peat production area. UAV image blocks were captured with ground sample distances (GSDs) of 15, 9.5, and 2.5 cm with the SWIR, VNIR, and consumer RGB cameras, respectively. Georeferencing showed consistent behavior, with accuracy levels better than GSD for the FPI cameras. The best accuracy in moisture estimation was obtained when using the reflectance difference of the SWIR band at 1246 nm and of the VNIR band at 859 nm, which gave a root mean square error (rmse) of 5.21 pp (pp is the mass fraction in percentage points) and a normalized rmse of 7.61%. The results are encouraging, indicating that UAV-based remote sensing could significantly improve the efficiency and environmental safety aspects of peat production.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.ispartofseriesIEEE Transactions on Geoscience and Remote Sensing
dc.subject.othergeographic information system
dc.subject.otherimage classification
dc.subject.otherradiometry
dc.subject.otherremotely piloted aircraft
dc.subject.otherstereo vision
dc.titleRemote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201606032872
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-06-03T15:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange
dc.relation.issn0196-2892
dc.relation.numberinseries9
dc.relation.volume54
dc.type.versionacceptedVersion
dc.rights.copyright© 2016 IEEE. This is an author's post-print version of an article whose final and definitive form has been published in the conference proceeding by IEEE.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokalibrointi
dc.subject.ysogeometria
dc.subject.ysokaukokartoitus
dc.subject.ysospektroskopia
jyx.subject.urihttp://www.yso.fi/onto/yso/p13931
jyx.subject.urihttp://www.yso.fi/onto/yso/p8708
jyx.subject.urihttp://www.yso.fi/onto/yso/p2521
jyx.subject.urihttp://www.yso.fi/onto/yso/p10176
dc.relation.doi10.1109/TGRS.2016.2565471
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot