dc.contributor.author | Honkavaara, Eija | |
dc.contributor.author | Eskelinen, Matti | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Saari, Heikki | |
dc.contributor.author | Ojanen, Harri | |
dc.contributor.author | Mannila, Rami | |
dc.contributor.author | Holmlund, Christer | |
dc.contributor.author | Hakala, Teemu | |
dc.contributor.author | Litkey, Paula | |
dc.contributor.author | Rosnell, Tomi | |
dc.contributor.author | Viljanen, Niko | |
dc.contributor.author | Pulkkanen, Merja | |
dc.date.accessioned | 2016-06-08T08:58:35Z | |
dc.date.available | 2016-06-08T08:58:35Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Honkavaara, E., Eskelinen, M., Pölönen, I., Saari, H., Ojanen, H., Mannila, R., Holmlund, C., Hakala, T., Litkey, P., Rosnell, T., Viljanen, N., & Pulkkanen, M. (2016). Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). <i>IEEE Transactions on Geoscience and Remote Sensing</i>, <i>54</i>(9). <a href="https://doi.org/10.1109/TGRS.2016.2565471" target="_blank">https://doi.org/10.1109/TGRS.2016.2565471</a> | |
dc.identifier.other | CONVID_26039901 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/50173 | |
dc.description.abstract | Miniaturized hyperspectral imaging sensors are becoming
available to small unmanned airborne vehicle (UAV) platforms.
Imaging concepts based on frame format offer an attractive
alternative to conventional hyperspectral pushbroom scanners
because they enable enhanced processing and interpretation potential
by allowing for acquisition of the 3-D geometry of the
object and multiple object views together with the hyperspectral
reflectance signatures. The objective of this investigation was to
study the performance of novel visible and near-infrared (VNIR)
and short-wave infrared (SWIR) hyperspectral frame cameras
based on a tunable Fabry–Pérot interferometer (FPI) in measuring
a 3-D digital surface model and the surface moisture of a peat
production area. UAV image blocks were captured with ground
sample distances (GSDs) of 15, 9.5, and 2.5 cm with the SWIR,
VNIR, and consumer RGB cameras, respectively. Georeferencing
showed consistent behavior, with accuracy levels better than GSD
for the FPI cameras. The best accuracy in moisture estimation was
obtained when using the reflectance difference of the SWIR band
at 1246 nm and of the VNIR band at 859 nm, which gave a root
mean square error (rmse) of 5.21 pp (pp is the mass fraction in
percentage points) and a normalized rmse of 7.61%. The results
are encouraging, indicating that UAV-based remote sensing could
significantly improve the efficiency and environmental safety aspects
of peat production. | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers | |
dc.relation.ispartofseries | IEEE Transactions on Geoscience and Remote Sensing | |
dc.subject.other | geographic information system | |
dc.subject.other | image classification | |
dc.subject.other | radiometry | |
dc.subject.other | remotely piloted aircraft | |
dc.subject.other | stereo vision | |
dc.title | Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV) | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201606032872 | |
dc.contributor.laitos | Tietotekniikan laitos | fi |
dc.contributor.laitos | Department of Mathematical Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2016-06-03T15:15:03Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | | |
dc.relation.issn | 0196-2892 | |
dc.relation.numberinseries | 9 | |
dc.relation.volume | 54 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2016 IEEE. This is an author's post-print version of an article whose final and definitive form has been published in the conference proceeding by IEEE. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | kalibrointi | |
dc.subject.yso | geometria | |
dc.subject.yso | kaukokartoitus | |
dc.subject.yso | spektroskopia | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13931 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8708 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2521 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10176 | |
dc.relation.doi | 10.1109/TGRS.2016.2565471 | |
dc.type.okm | A1 | |