Computational studies of gold-absorbate complexes on modified oxides
While bulk gold is known for its chemical inertness, nanosized gold clusters are active catalysts for a variety of important reactions. For some practical applications
gold clusters are supported and the cluster-support interaction can modify the cluster's properties. The knowledge of this interaction can be vital for obtaining desired
cluster properties. In this thesis, the adsorption of Au atoms and clusters on modified oxide surfaces is studied using density functional theory (DFT) calculations. The
support effects are considered by direct analysis of the adsorbed Au and using other
coadsorbates as reactivity probes.
Doping the CaO(001) surface by replacing a cation with a high valence dopant such as
Mo makes adsorption of electronegative species such as Au, O and O2 more exothermic. The stronger binding is accompanied with a charge transfer from the dopant to
the adsorbate. An Au adatom is anionic on a doped oxide as seen from its Bader
charge and zero magnetic moment. The charging of the dopant is seen from a PDOS
analysis where some of the d-electrons of the dopant are transferred to the Au s-states.
Further, the change of the dopant's charge can also be seen by the contraction of the
nearest neighbour distances between the dopant and surrounding O anions shows the
change in the dopant charge. The superoxo state of O2 on Mo doped CaO(001) is
illustrated by its elongated bond length in addition to the Bader charge and magnetic
moment of the molecule.
A modified Born-Haber (BH) cycle was devised to estimate the effect of different physical processes on the adsorption energy on the doped oxide. The adsorption energy was
split into three parts with an iono-covalent energy describing the local interactions, a
redox energy accounting for the charge transfer, and a Coulomb energy for the electrostatics between a charged adsorbate and dopant. While the Coulomb energy decays
with increasing adsorbate-dopant distance, the redox energy remains more exothermic
due to a much shorter distance between the negative anions and the positive dopant.
A similar BH cycle for Ag(001) supported MgO thin films showed that while the
electrostatic stabilization from the adsorbate-support interaction decays quickly with
increasing lm thickness, a compensation occurs in the redox energy becoming more
exothermic, leading to more exothermic adsorption also for thicker films.
Water is stabilized by electrostatic interaction with anionic Au on MgO/Ag(001);
however, no stabilization occurs on bulk MgO when the Au adatom is neutral. The
adsorption of water dissociation products H and OH on top of an Au adatom is more
exothermic with increasing lm thickness. Isophorone physisorbs on the MgO/Ag(001)
surface with energetic preference towards the MgO steps, which is due to stabilizing electrostatic interaction between the step cations and a polar O=C bond in the
molecule. The enol tautomers can bind to anionic Au atoms on the surface via a similar interaction with the polar H-O bond. The keto form is not stabilized by Au due to
a steric hindrance caused by C atoms near the positive end of the polar O=C bond.
...
Publisher
University of JyväskyläISBN
978-951-39-6538-9ISSN Search the Publication Forum
0075-465XKeywords
Metadata
Show full item recordCollections
- Väitöskirjat [3559]
License
Related items
Showing items with similar title or keywords.
-
Computational studies of chemical looping combustion materials and CO₂ activating surfaces
Parviainen, Teemu (University of Jyväskylä, 2016) -
Escaping scaling relationships for water dissociation at interfacial sites of zirconia-supported Rh and Pt clusters
Kauppinen, Minttu M.; Korpelin, Ville; Verma, Mohan Anand; Melander, Marko M.; Honkala, Karoliina (American Institute of Physics, 2019)Water dissociation is an important reaction involved in many industrial processes. In this computational study, the dissociation of water is used as a model reaction for probing the activity of interfacial sites of globally ... -
Influence of a Cu–zirconia interface structure on CO2 adsorption and activation
Gell, Lars; Lempelto, Aku; Kiljunen, Toni; Honkala, Karoliina (American Institute of Physics, 2021)CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the ... -
Modeling optical constants from the absorption of organic thin films using a modified Lorentz oscillator model
Dutta, Arpan; Tiainen, Ville; Qureshi, Hassan Ali; Duarte, Luís; Toppari, J. Jussi (Optica Publishing Group, 2022)Optical constants of organic thin films can be evaluated using the Lorentz oscillator model (LOM) which fails to fit inhomogeneously broadened absorption of highly concentrated molecular films. In modified LOM (MLOM), the ... -
DFT Prediction of Enhanced Reducibility of Monoclinic Zirconia upon Rhodium Deposition
Bazhenov, Andrey; Kauppinen, Minttu; Honkala, Karoliina (American Chemical Society, 2018)Oxides are an important class of materials and are widely used, for example, as supports in heterogeneous catalysis. In a number of industrial catalytic processes, oxide supports actively participate in chemical transformations ...