Näytä suppeat kuvailutiedot

dc.contributor.authorWang, Jin
dc.contributor.authorTapio, Kosti
dc.contributor.authorHabert, Aurélie
dc.contributor.authorSorgues, Sebastien
dc.contributor.authorColbeau-Justin, Christophe
dc.contributor.authorRatier, Bernard
dc.contributor.authorScarisoreanu, Monica
dc.contributor.authorToppari, Jussi
dc.contributor.authorHerlin-Boime, Nathalie
dc.contributor.authorBouclé, Johann
dc.date.accessioned2016-03-18T09:39:09Z
dc.date.available2016-03-18T09:39:09Z
dc.date.issued2016
dc.identifier.citationWang, J., Tapio, K., Habert, A., Sorgues, S., Colbeau-Justin, C., Ratier, B., Scarisoreanu, M., Toppari, J., Herlin-Boime, N., & Bouclé, J. (2016). Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices. <i>Nanomaterials</i>, <i>6</i>(3), Article 35. <a href="https://doi.org/10.3390/nano6030035" target="_blank">https://doi.org/10.3390/nano6030035</a>
dc.identifier.otherCONVID_25594311
dc.identifier.otherTUTKAID_69437
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/49104
dc.description.abstractSolid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesNanomaterials
dc.subject.othernitrogen doping
dc.subject.otherphoto-physics
dc.subject.otherphoto-response
dc.subject.othersolid-state dye-sensitized solar cells
dc.subject.otherSpiro-OMeTAD
dc.subject.otherTiO2
dc.titleInfluence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201603111831
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-03-11T16:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2079-4991
dc.relation.numberinseries3
dc.relation.volume6
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2016. This is an open access article distributed under the Creative Commons Attribution License.
dc.rights.accesslevelopenAccessfi
dc.rights.urlhttp://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/nano6030035
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

© the Authors, 2016. This is an open access article distributed under the Creative Commons Attribution License.
Ellei muuten mainita, aineiston lisenssi on © the Authors, 2016. This is an open access article distributed under the Creative Commons Attribution License.