Show simple item record

dc.contributor.authorvan Meer, R.
dc.contributor.authorGritsenko, O. V.
dc.contributor.authorGiesbertz, Klaas
dc.contributor.authorBaerends, E. J.
dc.date.accessioned2016-02-08T06:59:52Z
dc.date.available2016-02-08T06:59:52Z
dc.date.issued2013
dc.identifier.citationvan Meer, R., Gritsenko, O. V., Giesbertz, K., & Baerends, E. J. (2013). Oscillator strengths of electronic excitations with response theory using phase including natural orbital functionals. <i>Journal of Chemical Physics</i>, <i>138</i>(9), Article 094114. <a href="https://doi.org/10.1063/1.4793740" target="_blank">https://doi.org/10.1063/1.4793740</a>
dc.identifier.otherCONVID_23871049
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/48671
dc.description.abstractThe key characteristics of electronic excitations of many-electron systems, the excitation energies ωα and the oscillator strengths fα, can be obtained from linear response theory. In one-electron models and within the adiabatic approximation, the zeros of the inverse response matrix, which occur at the excitation energies, can be obtained from a simple diagonalization. Particular cases are the eigenvalue equations of time-dependent density functional theory (TDDFT), time-dependent density matrix functional theory, and the recently developed phase-including natural orbital (PINO) functional theory. In this paper, an expression for the oscillator strengths fα of the electronic excitations is derived within adiabatic response PINO theory. The fα are expressed through the eigenvectors of the PINO inverse response matrix and the dipole integrals. They are calculated with the phaseincluding natural orbital functional for two-electron systems adapted from the work of Lowdin ¨ and Shull on two-electron systems (the phase-including Löwdin-Shull functional). The PINO calculations reproduce the reference fα values for all considered excitations and bond distances R of the prototype molecules H2 and HeH+ very well (perfectly, if the correct choice of the phases in the functional is made). Remarkably, the quality is still very good when the response matrices are severely restricted to almost TDDFT size, i.e., involving in addition to the occupied-virtual orbital pairs just (HOMO+1)-virtual pairs (R1) and possibly (HOMO+2)-virtual pairs (R2). The shape of the curves fα(R) is rationalized with a decomposition analysis of the transition dipole moments.
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Chemical Physics
dc.subject.othereigenvalues and eigenfunctions
dc.subject.otherexcitation energy
dc.titleOscillator strengths of electronic excitations with response theory using phase including natural orbital functionals
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201602051478
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-02-05T13:15:15Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0021-9606
dc.relation.numberinseries9
dc.relation.volume138
dc.type.versionpublishedVersion
dc.rights.copyright© 2013 American Institute of Physics. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysoelektronit
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p4030
dc.relation.doi10.1063/1.4793740
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record