Näytä suppeat kuvailutiedot

dc.contributor.authorCochez, Michael
dc.contributor.authorNeri, Ferrante
dc.date.accessioned2016-02-03T07:45:05Z
dc.date.available2016-02-03T07:45:05Z
dc.date.issued2015
dc.identifier.citationCochez, M., & Neri, F. (2015). Scalable Hierarchical Clustering : Twister Tries with a Posteriori Trie Elimination. In <i>SSCI 2015 : Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence. Symposium CIDM 2015 : 6th IEEE Symposium on Computational Intelligence and Data Mining</i> (pp. 756-763). IEEE. <a href="https://doi.org/10.1109/SSCI.2015.12" target="_blank">https://doi.org/10.1109/SSCI.2015.12</a>
dc.identifier.otherCONVID_25335406
dc.identifier.otherTUTKAID_68008
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/48580
dc.description.abstractExact methods for Agglomerative Hierarchical Clustering (AHC) with average linkage do not scale well when the number of items to be clustered is large. The best known algorithms are characterized by quadratic complexity. This is a generally accepted fact and cannot be improved without using specifics of certain metric spaces. Twister tries is an algorithm that produces a dendrogram (i.e., Outcome of a hierarchical clustering) which resembles the one produced by AHC, while only needing linear space and time. However, twister tries are sensitive to rare, but still possible, hash evaluations. These might have a disastrous effect on the final outcome. We propose the use of a metaheuristic algorithm to overcome this sensitivity and show how approximate computations of dendrogram quality can help to evaluate the heuristic within reasonable time. The proposed metaheuristic is based on an evolutionary framework and integrates a surrogate model of the fitness within it to enhance the algorithmic performance in terms of computational time.
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofSSCI 2015 : Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence. Symposium CIDM 2015 : 6th IEEE Symposium on Computational Intelligence and Data Mining
dc.subject.otherclustering
dc.subject.otherhierrchial clustering
dc.titleScalable Hierarchical Clustering : Twister Tries with a Posteriori Trie Elimination
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-201602011362
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2016-02-01T10:15:05Z
dc.relation.isbn978-1-4799-7560-0
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange756-763
dc.type.versionacceptedVersion
dc.rights.copyright© 2015 IEEE. This is an author's post-print version of an article whose final and definitive form has been published in the conference proceeding by IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceIEEE Symposium on Computational Intelligence and Data Mining
dc.relation.doi10.1109/SSCI.2015.12
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot