Show simple item record

dc.contributor.authorScharnweber, Kristin
dc.contributor.authorSyväranta, Jari
dc.contributor.authorHilt, Sabine
dc.contributor.authorBrauns, Mario
dc.contributor.authorVanni, Michael J.
dc.contributor.authorBrothers, Soren
dc.contributor.authorKöhler, Jan
dc.contributor.authorKnezevic-Jaric, J.
dc.contributor.authorMehner, Thomas
dc.date.accessioned2016-01-25T11:38:45Z
dc.date.available2016-01-25T11:38:45Z
dc.date.issued2014
dc.identifier.citationScharnweber, K., Syväranta, J., Hilt, S., Brauns, M., Vanni, M. J., Brothers, S., Köhler, J., Knezevic-Jaric, J., & Mehner, T. (2014). Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes. <i>Ecology</i>, <i>95</i>(6), 1496-1505. <a href="https://doi.org/10.1890/13-0390.1" target="_blank">https://doi.org/10.1890/13-0390.1</a>
dc.identifier.otherCONVID_23563164
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/48452
dc.description.abstractLake ecosystems are strongly linked to their terrestrial surroundings by material and energy fluxes across ecosystem boundaries. However, the contribution of terrestrial particulate organic carbon (tPOC) from annual leaf fall to lake food webs has not yet been adequately traced and quantified. In this study, we conducted whole-lake experiments to trace artificially added tPOC through the food webs of two shallow lakes of similar eutrophic status, but featuring alternative stable regimes (macrophyte rich vs. phytoplankton dominated). Lakes were divided with a curtain, and maize (Zea mays) leaves were added, as an isotopically distinct tPOC source, into one half of each lake. To estimate the balance between autochthonous carbon fixation and allochthonous carbon input, primary production and tPOC and tDOC (terrestrial dissolved organic carbon) influx were calculated for the treatment sides. We measured the stable isotope ratios of carbon (d13C) of about 800 samples from all trophic consumer levels and compared them between lake sides, lakes, and three seasons. Leaf litter bag experiments showed that added maize leaves were processed at rates similar to those observed for leaves from shoreline plants, supporting the suitability of maize leaves as a tracer. The lake-wide carbon influx estimates confirmed that autochthonous carbon fixation by primary production was the dominant carbon source for consumers in the lakes. Nevertheless, carbon isotope values of benthic macroinvertebrates were significantly higher with maize additions compared to the reference side of each lake. Carbon isotope values of omnivorous and piscivorous fish were significantly affected by maize additions only in the macrophytedominated lake and d13C of zooplankton and planktivorous fish remained unaffected in both lakes. In summary, our results experimentally demonstrate that tPOC in form of autumnal litterfall is rapidly processed during the subsequent months in the food web of shallow lakes and is channeled to secondary and tertiary consumers predominantly via the benthic pathways. A more intense processing of tPOC seems to be connected to a higher structural complexity in littoral zones, and hence may differ between shallow lakes of alternative stable states.
dc.language.isoeng
dc.publisherEconomical Society of America
dc.relation.ispartofseriesEcology
dc.relation.urihttp://www.esajournals.org/doi/abs/10.1890/13-0390.1
dc.subject.otherAlloktonia
dc.subject.othervakaiden isotooppien analyysi
dc.subject.othermatalat järvet
dc.subject.otherjärvikokeet
dc.subject.otheromnivoriset kalat
dc.subject.otherterrestrinen hiili
dc.subject.otherAllochthony
dc.subject.otherstable isotope analysis
dc.subject.othershallow lakes
dc.subject.otherwhole-lake experiment
dc.subject.otheromnivorous fish
dc.subject.otherterrestrial carbon
dc.titleWhole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201601221248
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineAquatic Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-01-22T10:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1496-1505
dc.relation.issn0012-9658
dc.relation.numberinseries6
dc.relation.volume95
dc.type.versionpublishedVersion
dc.rights.copyright© 2014 by the Ecological Society of America. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.doi10.1890/13-0390.1
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record